1	IN THE UNITED STATES DISTRICT COURT
2	FOR THE MIDDLE DISTRICT OF PENNSYLVANIA HARRISBURG DIVISION
3	TAMMY KITZMILLER, et al., : CASE NO.
4	Plaintiffs : 4:04-CV-02688 vs. :
5	DOVER SCHOOL DISTRICT, : Harrisburg, PA Defendant : 17 October 2005
6	: 1:20 p.m.
7	TRANSCRIPT OF CIVIL BENCH TRIAL PROCEEDINGS
8	TRIAL DAY 10, AFTERNOON SESSION BEFORE THE HONORABLE JOHN E. JONES, III UNITED STATES DISTRICT JUDGE
9	UNITED STATES DISTRICT GODGE
10	APPEARANCES:
	For the Plaintiffs:
11	Eric J. Rothschild, Esq.
12	Thomas B. Schmidt, III, Esq. Stephen G. Harvey, Esq.
13	Pepper Hamilton, L.L.P. 3000 Two Logan Square 18th & Arch Streets
14	Philadelphia, PA 19103-2799 (215) 380-1992
15	(213) 300 1332
16	For the Defendant:
17	Patrick Gillen, Esq. Robert J. Muise, Esq.
18	Richard Thompson, Esq. The Thomas More Law Center 24 Franklin Lloyd Wright Drive
19	P.O. Box 393 Ann Arbor, MI 48106
20	(734) 930-7145
21	Court Reporter:
22	Wesley J. Armstrong, RMR Official Court Reporter
23	U.S. Courthouse 228 Walnut Street
24	Harrisburg, PA 17108 (717) 542-5569
25	

1	APPEARANCES (Continued)
2	For the American Civil Liberties Union:
3	Witold J. Walczak, Esq. American Civil Liberties Union
4	313 Atwood Street Pittsburgh, PA 15213
5	(412) 681-7864
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	INDEX	
2	Kitzmiller vs. Dover Schools 4:04-CV-2688	
3	Trial Day 10, Afternoon Session 17 October 2005	
4		
	PROCEEDINGS	D
5		Page
6	DEFENSE WITNESSES	
7	Dr. Michael Behe: Continued direct by Mr. Muise	4
8	continued direct by Mr. Marse	-
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

- 1 PROCEEDINGS
- THE COURT: Be seated, please. All right.

- 3 We return, and Mr. Muise, you may continue.
- 4 DIRECT EXAMINATION CONTINUED
- 5 BY MR. MUISE:
- 1 6 Q. Thank you, Your Honor. Dr. Behe, I want to
 - 7 ask you some questions about the term theory and
 - 8 its understanding in the science community. As
 - 9 the record has shown so far that the statement
 - 10 that is read to the students in this case uses
 - 11 this definition, "A theory is defined as a well
 - 12 tested explanation that unifies a broad range of
 - observations." Is that a good definition of a
 - 14 theory?
 - 15 A. Yes, it seems to be.
- 2 16 Q. Are you aware of the National Academy of
 - 17 Sciences' definition of the word theory?
 - 18 A. Yes, I've heard it.
- 3 19 Q. Let me see if this is what your
 - 20 understanding of that definition is. In
 - 21 science "a well substantiated explanation
 - of some aspect of the natural world that can
 - 23 incorporate facts, laws, inferences, and tested
 - 24 hypotheses." Do you agree with that definition?
 - 25 A. Well, that's certainly one definition of

- 1 the word theory, but you have to be sensitive
- 2 to the fact that the word theory can be used in

- 3 other senses as well.
- 4 Q. It can be used in other senses in the
 - 5 scientific community?
 - 6 A. Yes, in the scientific community itself.
- 5 7 Q. Now, using the National Academy of
 - 8 Sciences' definition of theory, does that
 - 9 mean a theory is almost certainly right?
 - 10 A. No, it's not. And that might surprise some
 - 11 people unless you, until you start to think of
 - 12 a couple of examples, and perhaps I'd like to
 - 13 discuss two examples of a well substantiated
 - 14 theory that was widely held, but nonetheless
 - 15 which turned out to be incorrect. The first --
- 6 16 Q. I'm sorry, and you prepared a slide to make
 - 17 this point?
 - 18 A. I did, but first let me mention something
 - 19 else. Before -- let me ask, let me mention an
 - 20 older example that most people are familiar
 - 21 with, and that's the example of geocentrism, the
 - 22 idea that the earth is the center of the solar
 - 23 system, the center of the universe, and that the
 - 24 stars and sun circle around the earth. Now, it
 - 25 turns out that was very well substantiated

- 1 because people could look up and watch the stars
- and the sun circle around the earth.
- 3 So they had very good evidence to support
- 4 their view. Furthermore, that theory was used
- 5 for ages to help sailors and so on navigate the
- 6 seas. So it was pretty well substantiated.
- 7 Nonetheless, of course as everybody knows it
- 8 turned out to be incorrect, and Copernicus
- 9 proposed that in fact the sun is the center of
- 10 the solar system and that the earth, while
- 11 revolving on its axis, travels around the sun.
- 12 So again that's an old example, but nonetheless
- it shows that a well accepted theory nonetheless
- is not necessarily correct.
- 7 15 Q. And you have an example of that in more
 - 16 modern times?
 - 17 A. Yes, a more modern example from the late
 - 18 19th century is something called the ether
 - 19 theory of the proposition of light, and that's
 - 20 shown on this slide here. I pulled off an
 - 21 article from the web describing ether theory
 - 22 from the Encyclopedia Britannica, and they say
 - 23 that, "The ether theory in physics, ether is a
 - 24 theoretical universal substance believed during
 - 25 the 19th century to act as the medium for

- 1 transmission of electromagnetic waves, much as
- 2 sound waves are traveled elastically such as
- 3 air. "The ether was assumed to be weightless,
- 4 transparent, frictionless, undetectable
- 5 chemically or physically, and literally
- 6 permeating all matter and space."
- 7 Now, this theory arose from the fact that
- 8 it was known that light was a wave, and like
- 9 waves in the ocean and waves in air that we
- 10 perceive as sound, waves need a medium to travel
- in. But if light is a wave, what does it travel
- 12 in in space? Ether. Ether was the medium
- 13 through which light traveled.
- 8 14 Q. Who was it that was the proponent of this
 - 15 theory?
 - 16 A. Well, it's a good thing we use this article
 - 17 from the Encyclopedia Britannica, because on the
 - 18 next slide we see that a man named James Clerk
 - 19 Maxwell, who was arguably the greatest physicist
 - of the 19th century, wrote an article for the
 - 21 Ninth Edition of Encyclopedia Britannica in the
 - 22 1870's, the title of which was Ether. And you
 - 23 should keep in mind when he wrote this for this
 - 24 publication, this was not going to be read not
 - only by the general public at large, but by all

- 1 physicists as well.
- 2 So he was writing of the idea as it was
- 3 commonly held at that time in the highest levels
- 4 of physics, and he wrote the following:
- 5 "Whatever difficulties we may have in forming
- 6 a consistent idea of the constitution of the
- 7 ether, there can be no doubt that the
- 8 interplanetary and interstellar spaces are not
- 9 empty, but are occupied by a material substance
- 10 or body which is certainly the largest and
- 11 probably the most uniform body of which we have
- 12 any knowledge."
- Now, later on Einstein's work caused
- 14 physics to abandon the ether theory. Physicists
- 15 no longer believed that the ether does in fact
- 16 fill space, but let's look further on the next
- 17 slide. This is a copy of James Clerk Maxwell's
- 18 article taken from a collection of his papers,
- 19 his article on the ether, and I want to
- 20 concentrate on the lower portion down here and
- 21 I think on the next slide that's blown up a
- 22 little bit.
- I'm not going to read this, I'm just going
- 24 to point out that you can observe that he's
- 25 using a lot of precise numbers about the energy

- of light by the sun, and it turns out he's using
- 2 that to do calculations, and in the calculations
- 3 he is deducing the properties of the ether. For
- 4 example, these large red arrows are pointing to
- 5 the coefficient of rigidity of ether, which is
- 6 given by the formula Ro V squared, which is
- 7 842.8.
- 8 The next red arrow points to a line labeled
- 9 density of ether, which is equal to Ro, which is
- 10 equal to 9.36 times 10 to the minus 19th power.
- 11 Now, the point I want to make using this slide
- is that James Clerk Maxwell, the greatest
- 13 physicist of his time, whose equations for
- 14 electricity and magnetism are still ought to
- 15 physics students today, was using his well
- 16 accepted theory to do precise calculations
- 17 and deduce precise physical properties of a
- 18 substance that did not exist. And so the point
- is that even a well accepted theory, even a
- 20 feature which seems to be required by something
- 21 else such as the wave nature of light, can
- 22 nonetheless be inaccurate and turned out to be
- 23 not only wrong, but utterly imaginary.
- 9 24 Q. Again I guess that would demonstrate the
 - 25 nature that scientific theories are tentative,

- 1 is that correct?
- 2 A. Yes, I think that it helps to make that

- 3 claim that scientific theories are tentative
- 4 more than just a hypothetical claim. The
- 5 history of science is replete with examples of
- 6 what seemed to be correct explanations which
- 7 turned out to be incorrect.
- 10 8 Q. Now, is Darwin's theory of evolution a
 - 9 theory in the sense of the National Academy
 - 10 of Sciences' definition?
 - 11 A. Well, it partly is and partly isn't.
- 11 12 Q. Did you prepare a slide to demonstrate that
 - 13 point?
 - 14 A. Yes. A slide here is an excerpt from a
 - 15 book written by a man named Ernst Mayr, who,
 - 16 Ernst Mayr was a very prominent evolutionary
 - 17 biologist, who died just I think last year at
 - 18 the age of 100, and was privy to a lot of the
 - 19 development of what's called neo-Darwinian
 - 20 theory in the middle of the 20th century, and he
 - 21 wrote a book entitled One Long Argument, and in
 - 22 it he makes the case that Darwin's theory is not
 - 23 some single entity, and let me just quote from
 - 24 that.
 - 25 He says, "In both scholarly and popular

- 1 literature one frequently finds references to
- 2 Darwin's theory of evolution as though it were
- 3 a unitary entity. In reality, Darwin's theory
- 4 of evolution was a whole bundle of theories,
- 5 and it is impossible to discuss Darwin's
- 6 evolutionary thought constructively if one does
- 7 not distinguish its various components. The
- 8 current literature can easily lead one perplexed
- 9 over the disagreements and outright
- 10 contradictions among Darwin specialists, until
- one realizes that to a large extent these
- 12 differs of opinion are due to a failure of some
- of these students of Darwin to appreciate the
- 14 complexity of his paradigm." So you have to
- 15 realize that Darwin's theory is not a single
- 16 claim. There are multiple claims within what's
- 17 called Darwin's theory, and they can be, they
- 18 can have different levels of evidence behind
- 19 them.
- 12 20 Q. Did he break out these five claims in this
 - 21 One Long Argument that you're referring to?
 - 22 A. Yes, he did. He went on to say, well what
 - 23 are those ideas that are grouped together under
 - 24 Darwin's theory? He called them, he identified
 - 25 five different components, the first of which is

- 1 "evolution as such." He says this is the theory
- 2 that the world is not constant or recently
- 3 create nor perpetually cycling, but rather is
- 4 steadily changing. So what we might call change
- 5 over time.
- 13 6 Q. Is that a theory or is it an empirical
 - 7 observation of facts? How would you describe
 - 8 that?
 - 9 A. Well, yeah, I myself would call that more
 - 10 an observation rather than a theory. We see
 - 11 that the earth seems to have changed over time.
 - 12 The second --
- 14 13 Q. Go ahead.
 - 14 A. The second aspect of Darwin's theory that
 - 15 Mayr discerned was common descent. This is the
 - 16 theory that, "Every group of organisms descended
 - from a common ancestor and that all groups of
 - 18 organisms, including animals, plants, and
 - 19 microorganisms, go back to a single origin of
 - 20 life on earth." The third point is something
 - 21 called multiplication of species. This theory
 - 22 explains the origin of enormous organic
 - 23 diversity.
 - I won't read the rest of the quote there,
 - 25 but it's just a question why are there so many

- 1 species, the multiplication of species. The
- 2 fourth component of Darwin's theory according to
- 3 Mayr is something called gradualism. According
- 4 to this theory, "Evolutionary change takes place
- 5 through the gradual change of populations and
- 6 not by the sudden saltational production of
- 7 new individuals that represent a new type." So
- 8 gradualism, things thing gradually over time.
- 9 And the last component according to Mayr is
- 10 natural selection. According to this theory,
- 11 "Evolutionary change comes through the abundant
- 12 production of genetic variation, the relatively
- 13 few individuals who survive, owing to
- 14 particularly well adapted combinations of
- inheritable characters, give rise to the next
- 16 generation." So this is what's commonly called
- 17 survival of the fittest.
- 15 18 Q. Is this strength of the scientific evidence
 - 19 equal for each of these five separate claims?
 - 20 A. No, they vary greatly in the strength of
 - 21 evidence that's behind each of those.
- 16 22 Q. Has it been your experience that supporters
 - of Darwin's theory of evolution and opponents of
 - intelligent design have conflated the evidence
 - 25 for the occurrence of evolution, the change over

- 1 time, with the evidence for the mechanism of
- 2 evolution, natural selection?
- 3 A. Yes. In my experience many people confuse
- 4 the various parts of Darwin's theory. They
- 5 don't make the distinction that Ernst Mayr
- 6 makes, and people see that there has been change
- 7 in the world and a lot of people then assume
- 8 that because there has been change in the world,
- 9 then it must have been change driven by natural
- 10 selection. And that's a mistaken conclusion.
- 17 11 Q. Are there other senses in which the word
 - 12 theory is used by scientists?
 - 13 A. Yes. You have to realize that scientists
 - 14 themselves use the word theory in a very broad,
 - 15 with a very broad range of senses. Not only in
 - 16 the sense that the National Academy gave to it,
 - 17 but scientists themselves use it to indicate
 - 18 many other things.
- 18 19 Q. Now, you did a search of Pub Med searching
 - 20 for the term theory, is that correct?
 - 21 A. Yes, that's right. In order to illustrate
 - 22 how scientists themselves use the word theory,
 - 23 I did a search in a database called Pub Med,
 - 24 which is maintained by the National Library of
 - 25 Medicine, which is a division of the National

- 1 Institutes of Health of the federal government,
- 2 and this is a database of abstracts and titles
- 3 of almost all biological articles that are
- 4 published. It contains millions and millions of
- 5 articles.
- 19 6 Q. And have you prepared several slides to
 - 7 demonstrate this point?
 - 8 A. Yes, I have. In this first one, which
 - 9 might be a little bit hard for me to read, but
 - 10 nonetheless the red arrow down here, I certainly
 - 11 won't read the whole abstract, but if you can
 - 12 see the little red arrow down here, let me just
 - 13 read a phrase from this. This says that, "This
 - 14 study does not support the previous theory."
 - 15 And so they are using the word theory here
 - 16 to mean a previous idea that has now been shown
 - 17 to be wrong or have evidence against it.
- 20 18 Q. If I may, Dr. Behe, just interrupt you here
 - 19 briefly that might help you in your testimony as
 - 20 well, if you go to the exhibit book that you've
 - 21 been provided, and if you look under Tab 8 I
 - 22 believe, there's an exhibit marked Defendant's
 - 23 Exhibit 203-A, as in Alpha.
 - A. Oh, okay. Yes.
- 21 25 Q. Is that the search that you conducted on

1 Pub Med in which the slides are derived from?

- A. Yes, that's correct. Yes, uh-huh.
- 22 3 Q. And if it will help you to perhaps look at
 - 4 those as opposed to trying to review it on the
 - 5 screen, work between the two.
 - 6 A. Okay. Thank you. And the next slide up on
 - 7 the screen here is if you follow the red arrows,
 - 8 and those points to other occasions of the word
 - 9 theory, it says in this article, "The membrane
 - 10 pacemaker theory of aging is an extension of the
 - 11 oxidative stress theory of aging." So in here
 - 12 the scientists are using the word theory to
 - 13 explain, or to refer to ideas that are very
 - limited in scope, which may or may not have much
 - 15 evidence to support them.
 - So in a much different sense than the
 - 17 National Academy used in its booklet. You
 - 18 could go to -- oh, thank you for the next slide.
 - 19 Let me just see if I can find that one article.
 - 20 Here it is. Okay. If you look at this other
 - 21 article from Pub Med, it's pointing to a
 - 22 sentence that begins, "In theory, change in
 - 23 climate would be expected to cause changes
 - 24 elsewhere."
 - 25 So again a scientist here is using the

- 1 world theory to refer to, you know, we would
- 2 expect this to happen, a kind of expectation.
- 3 Now, I put up here a publication of my own that

- 4 I published with my dissertation advisor Walter
- 5 Englander, and if you could read the top it
- 6 reads, "mixed gelation theory," and it refers to
- 7 mixtures of sickle cell hemoglobin with other
- 8 types of hemoglobin. So again we were using the
- 9 word theory to describe ideas and results that
- 10 have a very limited providence.
- 11 And finally on the next slide this is an
- 12 article taken from an issue of Science Magazine
- 13 seven years ago, a special issue which focused
- on the question of why is there sexual
- 15 reproduction. And the article was entitled "Why
- 16 Sex? Putting Theory to the Test, " and the
- 17 author said the following. "Biologists have
- 18 come up with a profusion of theories since first
- 19 posing these questions a century ago." These
- 20 questions meaning why is there sexual
- 21 reproduction, and again the author here is
- 22 using the word theory in terms of competing
- 23 hypotheses, competing ideas, none of which have
- 24 much evidence behind it, none of which have wide
- 25 acceptance in the scientific community.

- 23 1 Q. I want to return to Ernst Mayr and ask you
 - 2 are the parts of Darwin's theory as he's listed
 - 3 here well tested?
 - 4 A. No, they are not. If you look at the
 - 5 top ones, evolution as such, common descent,
 - 6 multiplication of species, those are all well
 - 7 tested. The claim of gradualism is in my
 - 8 opinion rather mixed. There's evidence for,
 - 9 and some people argue against it. But the
 - 10 component of Darwin's theory natural selection
 - 11 which is sometimes viewed as the mechanism that
 - 12 Darwin proposed for evolution is very poorly
 - 13 tested and has very little evidence to back
 - 14 it up.
- 24 15 Q. I want to go through in a little bit more
 - 16 detail on some of these claims. Going back to
 - 17 that first claim, and I believe you testified
 - 18 probably akin to an empirical observation, is
 - 19 that correct?
 - 20 A. Yes, evolution as such that the world
 - 21 is changed over time, and life as well.
- 25 22 Q. Does intelligent design refute the
 - 23 occurrence of evolution?
 - A. No, it certainly has no argument with this
 - 25 component of Darwin's theory. As a matter of

- 1 fact I think there is a, on the next slide
- 2 there's an excerpt from Of Pandas and People
- 3 where the authors write, "When the word is used

- 4 in this sense, that is the sense of change over
- 5 time, it is hard to disagree that evolution is a
- 6 fact. The authors of this volume certainly have
- 7 no dispute with that notion. Pandas clearly
- 8 teaches that life has a history, and that the
- 9 kinds of organisms present on earth have changed
- 10 over time." And let me make the point that
- 11 Ernst Mayr calls this component evolution as
- 12 such. That is the basic idea of evolution.
- 26 13 Q. So when you hear a claim that intelligent
 - design is anti-evolution, are those accurate?
 - 15 A. No, they are completely inaccurate.
- 27 16 Q. Returning back to the slide with Ernst
 - 17 Mayr, the second claim, does intelligent design
 - 18 speak to that second claim of common descent?
 - 19 A. No. Intelligent design looks to see if
 - 20 aspects of life exhibit a purposeful arrangement
 - of parts as evidenced by their physical
 - 22 structure. It does not say how such a thing
 - 23 might have happened.
- 28 24 Q. Is common descent nevertheless addressed in
 - 25 Pandas?

- 1 A. Yes. I've read sections that do address
- 2 common descent.
- 29 3 Q. How does it fit then within intelligent
 - 4 design?
 - 5 A. Well, some people point to empirical
 - 6 difficulties that they see for common descent,
 - 7 but common descent itself is not a claim, either
 - 8 for or against is not a claim of intelligent
 - 9 design theory.
- 30 10 Q. Would it be accurate then to say it's
 - viewed more as a difficulty with Darwinism
 - 12 rather than a claim for intelligent design?
 - 13 A. Yes, that's correct. Common descent
 - 14 applies more to Darwinian claims, which claim
 - descent with modification, than it does to
 - 16 intelligent design, because intelligent design
 - is focused exclusively on the question of
 - 18 whether we can discern the effects of
 - 19 intelligence in life.
- 31 20 Q. In which of these claims is intelligent
 - 21 design focused principally upon?
 - 22 A. Intelligent design focuses exclusively on
 - 23 the fifth claim of Ernst Mayr, or the fifth
 - 24 component that Ernst Mayr identified in Darwin's
 - 25 theory, that of natural selection, or in other

1 words what is the mechanism of evolution, how

- 2 could such things happen.
- 32 Q. Is it your view that that is where the
 - 4 scientific evidence for these five claims is
 - 5 perhaps the weakest?
 - 6 A. Yes, that is in fact the most poorly
 - 7 supported aspect of Darwin's theory. As a
 - 8 matter of fact, that's where the evidence in
 - 9 my view points away from Darwin's theory.
- 33 10 Q. Again so does intelligent design question
 - 11 all parts of Darwin's theory of evolution?
 - 12 A. No. It focuses exclusively on the question
 - of the mechanism of evolution, and I tried to
 - 14 make that clear as this picture shows. This is
 - 15 an issue of something called the reports of the
 - 16 National Center for Science Education, which
 - is a group which strongly advocates for the
 - 18 teaching of Darwinian evolution in school, and
 - 19 I wrote a letter to the editor of The Reports,
 - 20 which was published in an issue approximately
 - 21 four years ago.
 - 22 And here's an excerpt from that letter
 - 23 where I explain, "The core claim of intelligent
 - 24 design theory is quite limited. It says nothing
 - 25 directly about how biological design was

1 produced, who the designer was, whether there

- 2 has been common descent, or other such
- 3 questions. Those can be addressed separately."
- 4 It says, "Only that design can be empirically
- 5 detected in observable features of physical
- 6 systems."
- 7 And I go on to say, "As an important
- 8 corollary it also predicts that mindless
- 9 processes such as natural selection or the
- 10 self-organization scenarios favored by Shanks
- and Joplin will not be demonstrated to be able
- 12 to produce irreducible systems of the complexity
- 13 found in cells." So I tried to clearly explain
- 14 that the only focus of intelligent design is on
- 15 the mechanism of evolution, or the question of
- whether or not aspects of life show the marks
- 17 of intelligent design.
- 34 18 Q. And you said this was published in The
 - 19 Reports by the National Center for Science
 - 20 Education?
 - 21 A. Yes, that's correct.
- 35 22 Q. And that's an organization where Dr. Kevin
 - 23 Padian is the president?
 - 24 A. Yes, I understand he's the president of
 - 25 that.

36 1 Q. And Dr. Alters and Forrest are also

- 2 associated with this organization?
- 3 A. I think Dr. Forrest is and Dr. Miller

- 4 is. I'm not sure about Dr. Alters, and also
- 5 Professor Pennock has a reply in that same
- 6 issue of The Reports.
- 37 Q. Now, Dr. Miller in his expert report that
 - 8 he's provided in this case said that Darwin's
 - 9 theory actually has many mechanisms. Do you
 - 10 agree with that?
 - 11 A. No, I disagree, and here is a little copy
 - of Professor Miller's expert report, and he
 - 13 lists a number of things, including genetic
 - 14 recombination, transposition, horizontal gene
 - transfer, gene duplication, sexual selection,
 - 16 developmental mutation and so on, and he says
 - 17 that, "The relative importance of these and
 - 18 other mechanisms of evolution, these conflicts
 - 19 continue to motivate."
 - 20 So he seems to be calling these mechanisms.
 - 21 He's making a mistake here. Except for sexual
 - 22 selection, all the other components listed in
 - 23 his report, gene transfer, transposition,
 - 24 recombination, are simply ways that diversity
 - 25 is generated in nature. But diversity has to be

1 acted upon in Darwin's understanding by natural

- 2 selection. So natural selection is the only
- 3 mechanism of Darwinian evolution. The sexual
- 4 selection that he lists, that is a mechanism,
- 5 but it's a subset of natural selection where
- 6 features have selected value due to the
- 7 consideration of their ability to allow an
- 8 organism to attract mates or otherwise
- 9 reproduce.
- 38 10 Q. Do other scientists agree with your
 - 11 position on this?
 - 12 A. Yes, they do. Here's an excerpt from
 - an article by a man named Jerry Coyne, who
 - 14 was writing in a magazine called The New
 - 15 Republic. Now, Jerry Coyne is a professor of
 - 16 evolutionary biology at the University of
 - 17 Chicago and a vocal opponent of intelligent
 - design, as the title of the article shows.
 - 19 He writes an article entitled The Case Against
 - 20 Intelligent Design.
 - 21 Nonetheless, he disputes what Professor
 - 22 Miller has said, the idea that he had talked
 - about, Jerry Coyne says the following, "Since
 - 24 1859 Darwin's theories have been expanded, and
 - 25 we now know that some evolutionary change can be

1 caused by forces other than natural selection.

- 2 For example, random and nonadaptive changes in
- 3 the frequencies of different genetic variance,
- 4 the genetic equivalent of coin tossing, have
- 5 produced evolutionary changes in DNA sequences,"
- 6 and here is an important point.
- 7 "Yet, selection is still the only known
- 8 evolutionary force that can produce the fit
- 9 between organism and environment, or between
- 10 organism and organism, that makes nature seem
- 11 designed." So Professor Coyne was saying that
- 12 well, there can be random genetic changes in
- organisms, but the only mechanism pertinent to
- 14 the discussion of whether there is design in
- 15 nature or not is Darwin's idea of natural
- 16 selection.
- 39 17 Q. Do any other scientist besides intelligent
 - 18 design proponents question the ability of
 - 19 natural selection to explain various aspects
 - 20 of life?
 - 21 A. Yes, a number of scientists who are not
 - 22 design proponents also question the ability of
 - 23 natural selection to account for features of
 - life, and one example is shown on this slide,
 - 25 a man named Stewart Kauffman, who is a professor

of biology at the University of Toronto now, in

- 2 1993 wrote a book called The Origins of Order:
- 3 Self organization and Selection in Evolution,
- 4 and that was published by Oxford University
- 5 Press, and in the introduction to his book he
- 6 wrote the following, "Darwin's answer to the
- 7 sources of the order we see all around us is
- 8 overwhelmingly an appeal to a single singular
- 9 force: natural selection. It is this single
- 10 force view which I believe to be inadequate, for
- it fails to notice, fails to stress, fails to
- incorporate the possibility that simple and
- 13 complex systems exhibit order spontaneously."
- 14 So in this quotation Professor Kauffman
- is summarizing his view that the Darwinian
- 16 mechanism of natural selection is inadequate
- 17 to explain some features of biology.
- 40 18 Q. Does Dr. Kauffman still maintain that view?
 - 19 A. Yes, he does. He also contributed an
 - 20 article to the book Debating Design, to which
 - 21 I and others also contributed, which was
 - 22 published by Cambridge University Press last
 - 23 year in which he reiterates his views about
 - 24 self-organization and complexity. He wrote in
 - 25 the underlying bold portion, "Much of the order

1 in organisms I believe is self organized and

- 2 spontaneous. Self-organization mingles with
- 3 natural selection in barely understood ways to
- 4 yield the magnificence of our teeming biosphere.
- 5 We must therefore expand evolutionary theory."
- 6 In other words natural selection is not
- 7 sufficient. We have to expand evolutionary
- 8 theory to include something else other than
- 9 natural selection if we want to explain what
- 10 we see in biology.
- 41 11 Q. Sir, you've already shown that the theory
 - of evolution does not consist of a single claim,
 - and you testified that proponents of the theory
 - of evolution tend to conflate evidence for one
 - 15 claim to support another claim, and also you
 - 16 testified that opponents of ID, intelligent
 - 17 design, claim that it's anti-evolution, and you
 - 18 showed a slide of Pandas which refutes that
 - 19 particular claim. Now, when we say, when we use
 - 20 the term Darwin's theory of evolution, what is
 - 21 the common understanding for that?
 - 22 A. Well, the common understanding is that
 - 23 natural selection has driven all of the change
 - in the world, we see in the biological world.
- 42 25 O. Now, the evolution as such, understanding

- 1 that life is changed over time, that was
- 2 understood before Darwin's time, is that
- 3 correct?
- 4 A. Yes. People have been proposing such
- 5 things for I think a couple of hundred years
- 6 before Darwin's day. Darwin's distinctive
- 7 contribution to this discussion was the proposal
- 8 of natural selection. It was he who had
- 9 proposed what people considered to be a
- 10 completely unintelligent mechanism for the
- 11 production of the complexity of life.
- 43 12 Q. With that understanding, sir, is Darwin's
 - 13 theory of evolution a fact?
 - 14 A. No. No theory is a fact.
- 44 15 Q. Are there gaps and problems with Darwin's
 - 16 theory of evolution?
 - 17 A. Yes, there are.
- 45 18 Q. Is there one principal contention you have
 - 19 with the explanatory power of the theory of
 - 20 evolution that's is particularly relevant for
 - 21 intelligent design?
 - 22 A. Yes, I think the major overwhelming problem
 - 23 with Darwin's theory is what I summarized in my
 - 24 expert report. I stated the following, "It is
 - 25 my scientific opinion that the primary problem

- 1 with Darwin's theory of evolution is the lack of
- 2 detailed, testable, rigorous explanations for
- 3 the origin of new complex biological features."
- 4 MR. ROTHSCHILD: Your Honor, objection, just
- 5 to the extent I just want to make sure that the
- 6 expert report is not coming into evidence. I
- 7 don't object to the slide as long as that's
- 8 clear.
- 9 MR. MUISE: The report is not coming, Your
- 10 Honor. It's just for demonstrative purposes to
- 11 demonstrate his opinion.
- 12 THE COURT: I'll consider that just to be a
- 13 clarification objection.
- MR. ROTHSCHILD: Thank you, judge.
- THE COURT: There's no need for a ruling.
- 16 You can proceed.
- 17 BY MR. MUISE:
- 46 18 Q. Dr. Behe, do scientists who do not adhere
 - 19 to intelligent design share your opinion of
 - 20 this?
 - 21 A. Yes, they do. A couple of examples are
 - 22 shown next. Here is an excerpt from a book by a
 - 23 man named Franklin Harold, who's an emeritus
 - 24 professor of chemistry at Colorado State
 - 25 University, and four years ago he published a

- 1 book entitled The Way of the Cell with Oxford
- 2 University Press, and he quote, "We must concede

- 3 that there are presently no detailed Darwinian
- 4 accounts of the evolution of any biochemical
- 5 system, only a variety of wishful speculations."
- 6 So he also seems to share that view.
- 47 7 Q. Has Dr. Miller acknowledged such problems?
 - 8 A. Yes. Dr. Miller himself wrote in his
 - 9 expert statement, "Living cells are filled of
 - 10 course with complex structures, " and let's skip
 - 11 down to the underlying bold statement, he
 - 12 continues, "One might pick nearly any cellular
 - 13 structure, the ribosome for example, and claim
 - 14 correctly that its origin has not been explained
 - in detail by evolution." So again everybody
 - 16 agrees that Darwinian theory has not given an
 - 17 explanation of many, many features of life.
- 48 18 Q. With that in mind, sir, I have some
 - 19 specifics I want to ask you. Has the theory
 - of evolution, in particular natural selection,
 - 21 explained the existence of the genetic code?
 - 22 A. No.
- 49 23 Q. Has the theory of evolution, in particular
 - 24 natural selection, explained the transcription
 - 25 of DNA?

- 1 A. No.
- 50 2 Q. Has the theory of evolution, in particular
 - 3 natural selection, explained translation of "M"

- 4 RNA?
- 5 A. No.
- 51 6 Q. Has the theory of evolution, in particular
 - 7 natural selection, explained the structure and
 - 8 function of the ribosome?
 - 9 A. No.
- 52 10 Q. Has the theory of evolution, in particular
 - 11 natural selection, explained the structure of
 - 12 the cytoskeleton?
 - 13 A. No.
- 93 14 Q. Has the theory of evolution, in particular
 - 15 natural selection, explained nucleosome
 - 16 structure?
 - 17 A. No.
- 54 18 Q. Has the theory of evolution, in particular
 - 19 natural selection, explained the development of
 - 20 new protein interactions?
 - 21 A. No.
- 55 22 Q. Has the theory of evolution, in particular
 - 23 natural selection, explained the existence of
 - the proteosoma?
 - 25 A. No.

- 96 1 Q. Has the theory of evolution, in particular
 - 2 natural selection, explained the existence of
 - 3 the endoplasmic reticulum?
 - 4 A. No.
- - 6 natural selection, explained the existence of
 - 7 motility organelle such as the bacterial
 - 8 flagellum in the eucaryotic syllium?
 - 9 A. No.
- 58 10 Q. Has the theory of evolution, in particular
 - 11 natural selection, explained the development of
 - 12 the pathways for the construction of the syllium
 - 13 and flagella?
 - 14 A. No.
- 59 15 Q. Has the theory of evolution, in particular
 - 16 natural selection, explained the existence of
 - 17 defensive apparatus such as the immune system
 - 18 and blood clotting system?
 - 19 A. No.
- 60 20 Q. Sir, is it fair to say that under this
 - 21 broad category of difficulties that we just
 - 22 reviewed lies much of the structure and
 - 23 development of life?
 - A. Yes, that's correct.
- 61 25 Q. Does this cause you to question whether a

1 Darwinian framework is the right way to approach

- 2 such questions?
- 3 A. Yes, it does, because if Darwinian theory
- 4 is so fruitless at explaining the very
- 5 foundation of life, the cell, then that makes
- 6 a person reasonably doubt whether it's, whether
- 7 some other explanation might be more fruitful.
- 62 8 Q. Sir, in your expert opinion is there a
 - 9 problem with falsification of Darwin's theory?
 - 10 A. Yes, there's a big problem with that.
 - 11 Falsification is roughly the idea that there
 - is some evidence which would make somebody
 - 13 change his mind that a theory was right or not
 - 14 right. In many instances Darwinian theory is
 - 15 extremely difficult to falsify, and let me give
 - one example. On the next slide is shown a
 - 17 figure of vertebrate embryos taken from a
 - 18 biochemistry textbook by Voet and Voet, and this
 - is the biochemistry textbook that is used widely
 - 20 in colleges and universities across the United
 - 21 States.
 - 22 The figure here is drawn after a figure
 - 23 that was first drawn in the 19th century by a
 - 24 man named Ernst Haekel, who was an embryologist
 - 25 and supporter of Darwin's theory. As you see in

1 the figure, the vertebrate embryos all begin by

- 2 looking virtually identical, very extremely
- 3 similar, and yet in the course of their
- 4 development they develop into completely
- 5 different organisms. A fish, reptile, bird,
- 6 amphibian, human, and so on. And Ernst Haeckel
- 7 thought it was exactly in accord with what
- 8 Darwin expected.
- 9 And the reasoning is illustrated by a
- 10 quotation on the next slide from a book entitled
- 11 Molecular Biology of the Cell, which was written
- 12 by Bruce Alberts, who I mentioned earlier was
- 13 president of the National Academy of Sciences.
- 14 One of his co-authors is James Watson, the Nobel
- 15 laureate who with Francis Crick won the prize
- 16 for discovering the double helical shape of DNA,
- 17 and other illustrious authors. And in the
- 18 textbook they explain those embryological facts
- 19 by saying the following, "Early developmental
- 20 stages of animals whose adult forms appear
- 21 radically different are often surprisingly
- 22 similar.
- 23 "Such observations are not difficult to
- 24 understand. The early cells of an embryo are
- like cards at the bottom of a house of cards.

- 1 A great deal depends on them, and even small
- 2 changes in their properties are likely to result

- 3 in disaster." So if I can summarize their
- 4 reasoning here, the authors were saying these
- 5 extremely similar embryos are exactly what we
- 6 expect, because in vertebrates the basic body
- 7 plan is being laid down in the early
- 8 generations. And if you upset the foundation
- 9 of a structure, that's likely to essentially
- 10 destroy it.
- 11 So what we expect is for later stages of
- development to be dissimilar, but the earlier
- 13 stages to be very, very similar. Nonetheless,
- 14 it turns out that those drawings were incorrect,
- and a number of years ago in the late 1990's the
- 16 journal Science ran a story about a study that
- 17 had been done to try to reproduce Haeckel's,
- 18 results, and it turns out they could not be
- 19 reproduced. And the story was entitled
- 20 Haeckel's Embryos: Fraud Rediscovered, and if
- 21 you look at the illustration in the news story,
- on the bottom row one sees the drawings of
- 23 embryos as Haeckel produced them, and on the top
- 24 row you see photographs of embryos which were
- 25 taken by a modern team of embryologists, looking

- very, very much different.
- 2 And on the next slide are excerpts from
- 3 the news story. It was written, it says,
- 4 "Generations of biology students may have been
- 5 misled by a famous set of drawings of embryos
- 6 published 123 years ago by Ernst Haeckel.
- 7 'The impression they give that the embryos are
- 8 exactly alike is wrong, ' says Michael
- 9 Richardson, an embryologist at St. George's
- 10 Hospital Medical School in London, " and he was
- 11 the lead author of the study which showed the
- incorrectness of Haeckel's results.
- "Not only did Haeckel add or omit features,
- 14 but he also fudges the scale to exaggerate
- 15 similarities." Now, here is the point with
- 16 respect to the topic of falsification. Since
- 17 these studies have appeared, no Darwinian
- 18 biologist that I'm aware of has decided that
- 19 Darwinian biology is incorrect. But if a
- theory, Darwin's theory, can live with one
- 21 result, and its utter opposite with virtually
- 22 identical embryos and with significant variation
- 23 in the embryos, then it says nothing about that
- 24 topic.
- 25 It doesn't predict anything. It will live

1 with whatever result experimental science comes

- 2 up with, which means that Darwin's theory has
- 3 nothing significant to say about a major feature
- 4 of life, embryology, because if you think about
- 5 it, if one kind of organism is to give rise to
- 6 another kind of organism over time, then the
- 7 embryological plan for building that first
- 8 organism has to change into the embryological
- 9 plan to build the second kind of organism, and
- 10 yet how that could happen is a topic that
- 11 Darwin's theory of evolution does not address in
- 12 the least.
- 63 13 Q. Sir, if I could direct your attention to
 - 14 the exhibit book, under Tab 16, Defendant's
 - 15 Exhibit 271?
 - 16 A. Number 16 did you say?
- 64 17 Q. Tab 16, that's right. Is that a copy of
 - 18 that article, it's an on-line version of
 - 19 Haeckel's Embryos: Fraud Rediscovered?
 - 20 A. Yes, it's a copy of the article that does
 - 21 not have the illustrations in it.
- 65 22 Q. Was the article written by Elizabeth --
 - 23 A. Pennisi.
- Q. Pennisi, the one you've been referring to?
 - 25 A. Yes.

- 67 1 Q. Does the bacterial flagellum in the Type 3
 - 2 secretory system, and we're going to be talking

- 3 about these in a little bit greater detail
- 4 later, but is there an analogy also with regard
- 5 to the falsifiability that you could --
- 6 A. Yes. As I'll discuss later, again
- 7 Darwinian theory can't decide whether the
- 8 Type 3 secretory system might have arisen from
- 9 the flagellum, the flagellum from the secretory
- 10 system, whether both developed independently,
- or other pertinent questions. So again the
- 12 question of falsifiability, if it doesn't, can't
- 13 predict any of those, then it has nothing to say
- 14 about those features.
- 68 15 Q. Now, does Darwin's theory have difficulty
 - 16 explaining what we see in nature regarding
 - 17 sexual reproduction?
 - 18 A. Yes, turns out that it does. It was
 - 19 realized not long after Darwin published his
 - 20 theory, it was realized by a man named August
 - 21 Weisman that Darwinian theory actually predicts
 - 22 that most organisms should reproduce asexually
 - 23 because, one reason is because Darwinian theory,
 - one goal of an organism, goal in the terms of a
 - 25 better evolutionary result, is to get more of

the organism's genes into the next generation.

- 2 If an organism reproduced asexually by clonal
- 3 reproduction, the offspring would contain all of
- 4 the genes of the organism. But during sexual
- 5 reproduction, for each offspring reproduced the
- 6 parent gets only half of its genes into the next
- 7 generation.
- 8 And this has been a conundrum that has been
- 9 unsolved in Darwinian theory for over a century,
- 10 and during that time scientists have not just
- 11 been sitting around. They've been trying very
- 12 hard to come up with explanations for that, and
- as a matter of fact they've come up with so many
- 14 suggestions, so many theories, that in 1999 a
- 15 man named Kondrashov published an article in the
- 16 journal Heredity entitled Classification of
- 17 Hypotheses on the Advantage of Amphimixis, and
- 18 for amphimixis read sexual reproduction. There
- 19 were so many competing ideas that he had to
- 20 classify them into groups to try to keep better
- 21 track of them, and he --
- 69 22 Q. This was written in 1993?
 - 23 A. Yes, in 1993, about ten years ago. Let me
 - just read the first sentence here, "After more
 - 25 than a century of debate, the major factors of

- 1 the evolution of reproduction are still
- 2 obscure."
- 70 3 Q. If I could direct your attention again to
 - 4 your exhibit book, Tab Number 9, and it's listed
 - 5 as Defendant's 270, is that the article you're
 - 6 referring to?
 - 7 A. Yes, that's the one. And if I could
 - 8 continue the quote after the bolded text, he
 - 9 continues, "During the past 25 years, hypotheses
 - 10 have become so numerous and diverse that their
 - 11 classification is a necessity. The time is
 - 12 probably right for this. No fundamentally new
 - 13 hypothesis has appeared in the last five years,
 - 14 and I would be surprised and delighted if some
 - important idea remain unpublished." So he was
 - 16 expressing his view that an exhaustive look had
 - 17 been done and that we have not yet come up with
 - 18 an answer.
- 71 19 Q. Do you have additional slides and articles
 - 20 to demonstrate this point?
 - 21 A. Yes, that's right. This was in 1993. In
 - the year 1998 Science, the journal Science
 - 23 issued a special issue which focused on the
 - 24 evolution of sex, and in that the leadoff
 - 25 article of a number of articles in that issue

1 was the one entitled Why Sex? Putting Theory to

- 2 the Test. Now, notice the word theory is not
- 3 being used in the sense that the National
- 4 Academy gives to it.
- 5 And if you look at this little abstract
- 6 which is, or this little blurb up on the
- 7 left-hand corner I think on the next slide
- 8 that's enlarged, it stated that, "After decades
- 9 of theorizing about the evolutionary advantages
- 10 of sex, biologists are at last beginning to test
- 11 their ideas in the real world." So let notice a
- 12 couple of things about that.
- 13 Again they're using theory, theorizing, in
- 14 a sense like brainstorming. Furthermore, they
- say that this brainstorming, this theorizing
- goes on ahead of the activity of testing it.
- 17 And furthermore that the testing can be put off
- 18 decades from when the theorizing takes place.
- 72 19 Q. If I could direct your attention again to
 - the exhibit book under Tab 10 and there's an
 - 21 exhibit listed, Defendant's Exhibit Number 269,
 - 22 is that a copy, it looks like an on-line version
 - 23 copy of the article that you're referring to?
 - A. Yes, that's right.
- 73 25 Q. I believe you have another slide you'd like

- 1 to cite?
- 2 A. Yes. There's an excerpt from this article

- 3 which is on the next I think -- oh, yes, I'm
- 4 sorry. Yes, this is kind of a repeat of one
- 5 that I've done already, "Biologists have come up
- 6 with a profusion of theories since first posing
- 7 these questions a century ago." So clearly this
- 8 is an idea that has stumped science for a very
- 9 long time. Another excerpt from the article is
- 10 shown on the next slide. The author writes,
- 11 "How sex began and why it thrived remains a
- 12 mystery. Why did sex overtake asexual
- 13 reproduction?" I'm going to skip down here,
- 14 and the author continues, "Sex is a paradox in
- 15 part because if nature puts a premium on genetic
- 16 fidelity, asexual reproduction should come out
- 17 ahead. All this shuffling is more likely to
- 18 break up combinations of good genes than to
- 19 create them. Yet nature keeps reshuffling the
- 20 deck."
- 74 21 Q. And if I could just so the record is clear,
 - 22 those last two quotes that you read from were
 - 23 from which articles?
 - 24 A. They were from the article Why Sex? Putting
 - 25 Theory to the Test by Bernice Wuethrich.

75 1 Q. Again do you have another slide to make

- 2 this point?
- 3 A. Yes, I do. This is a quotation of a man

- 4 named George Williams. George Williams is a
- 5 prominent evolutionary biology at the State
- 6 university of New York at Stonybrook, and he
- 7 wrote a book in the mid 1970's entitled Sex and
- 8 Evolution, and a part of that book was quoted in
- 9 a book recently by Richard Dawkins of Oxford
- 10 University, and the quotation is this. "This
- 11 book, "that is George Williams' book, "this book
- is written from a conviction that the prevalence
- of sexual reproduction in higher plants and
- 14 animals is inconsistent with current
- 15 evolutionary theory. There is a kind of crisis
- 16 at hand in evolutionary biology, " and Dawkins
- 17 comments on this quotation on the next slide.
- 18 Richard Dawkins, an evolutionary biologist
- 19 at Oxford University, Dawkins says, this is
- 20 Dawkins speaking, "Maynard Smith and Hamilton,"
- 21 which refers to two prominent evolutionary
- 22 biologists, "said similar things. It is to
- 23 resolve this crisis that all three Darwinian
- 24 heroes along with others of the rising
- 25 generation, labored. I shall not attempt an

- 1 account of their efforts, and certainly I have
- 2 no rival solution to offer myself."
- 3 So the point is that this problem is still
- 4 unresolved, and yet this goes to the very heart
- of evolutionary theory, or a theory of evolution
- 6 that expects that most species would reproduce
- 7 asexually can be likened to a theory of gravity
- 8 that expects that most objects will fall up.
- 9 And in either case a reasonable person might
- 10 wonder if the theory is missing some large piece
- of the puzzle, and certainly I think as an
- 12 educator students should be apprised of facts
- 13 like these.
- 76 14 Q. Sir, does Darwin's theory account for the
 - 15 origins of life?
 - 16 A. No, Darwin's theory does not even address
 - 17 the origin of life.
- 77 18 Q. Is this an unsolved scientific problem?
 - 19 A. Yes, it certainly is. And it also poses,
 - 20 it poses a large problem for Darwin's theory
 - 21 as well, and --
- 78 22 Q. What is that problem?
 - 23 A. I think I have a little excerpt from my
 - 24 expert report in which I dealt with that
 - 25 question, and I said the following, "The problem

- 1 that the Origin of Life poses for Darwin's
- 2 theory is the following. If the beginning of

- 3 life required something extra, something in
- 4 addition to the unintelligent operation of
- 5 natural processes that Darwin's theory invokes,
- 6 then it would be fair for a curious inquirer to
- 7 wonder if those other processes ended with the
- 8 beginning of life, or if they continued to
- 9 operate throughout the history of life," and
- 10 I'll stop there, close quote. So the point is
- 11 this. If we cannot explain the origin of life
- 12 by unintelligent processes, and if intelligent
- 13 processes were in fact involved with that, then
- 14 we might wonder did they continue throughout the
- 15 history of life, or did they stop at that point.
- 79 16 Q. Sir, do you have an additional slide to
 - 17 make this point regarding the questions of the
 - 18 origins of life is left unresolved?
 - 19 A. Yes, I do. Just a couple. It's easy to
 - 20 find scientists involved in a study of the
 - 21 origin of life who are very willing to say that
 - 22 we have not a clue as to how life started, and
 - 23 here's a convenient source, this was an
 - interview by PBS with a man named Andrew Knoll,
 - 25 who is an eminent professor of biology at

- 1 Harvard who studies the early development of
- 2 life, and one of the topics they wanted to speak

- 3 with him over was, "Why it's so devilishly
- 4 difficult to figure out how life got started."
- 5 And on the next slide they put the question
- 6 to Andrew Knoll, they say, "How does life form?"
- 7 And Professor Knoll says, "The short answer is
- 8 we don't really know how life originated on
- 9 this planet." And skip a bit, "We remain in
- 10 substantial ignorance." Next slide, they asked
- 11 another question, the interviewer asked, "Will
- 12 we ever solve the problem of the origin of
- 13 life?"
- 14 And Knoll says, "I don't know. I imagine
- my grandchildren will still be sitting around
- 16 saying that it's a great mystery." So that
- here's a person involved in studying the origin
- of life who says quite frankly that we don't
- 19 know what's going on and he doesn't have any
- 20 particular expectation that our grandchildren
- 21 will understand the origin of life.
- 80 22 Q. Sir, if I could direct your attention to
 - the exhibit book under Tab 12, Defendant's
 - 24 Exhibit Number 267, is that the interview that
 - 25 you've just been testifying to?

- 1 A. Yes, it is.
- 81 2 Q. I'd like to direct your attention to what
 - 3 I have put up on the screen here is an excerpt

- 4 from a booklet entitled Science and Creationism
- 5 which was put out by the National Academy of
- 6 Sciences in 1999, and if you could please read
- 7 that quote?
- 8 A. Yes. The National Academy wrote, "For
- 9 those who are studying the origin of life, the
- 10 question is no longer whether life could have
- originated by chemical processes involving
- 12 nonbiological components. The question instead
- 13 has become which of many pathways might have
- 14 been followed to produce the first cell," and
- 15 I'll stop there, close quote.
- 82 16 Q. Do you have any problems with this
 - 17 statement?
 - 18 A. Yes. I find it very disturbing, because
 - in that statement you don't see any reference
 - 20 to the results of workers in the field. You
 - 21 don't see any reference to the data of what
 - 22 people have come up with. Instead, in this
 - 23 publication they focus on the attitudes of the
 - 24 scientists involved, and while the attitudes
 - 25 might be an interesting sociological phenomenon,

1 they do not go to the question of whether we

- 2 can explain the origin of life.
- 3 And furthermore, this booklet is written
- 4 for teachers and indirectly then for their
- 5 students, and by advising teachers or letting
- 6 teachers or by saying this to teachers, it seems
- 7 to me the National Academy is encouraging them
- 8 to have their students think of this problem in
- 9 the same way that workers have been doing for
- 10 the past fifty years in the same way that has
- 11 proved fruitless for over half a century.
- 83 12 Q. Sir, is there a scientific controversy
 - 13 regarding intelligent design in evolution?
 - 14 A. Yes, there is.
- 84 15 Q. And what leads you to that conclusion?
 - 16 A. Well, in addition to, you know, the
 - 17 articles and counterarticles and things that
 - have been mentioned earlier in the day, and
 - 19 besides the conferences and symposia that I have
 - 20 attended, there have also been a number of
 - 21 published books and articles debating design,
 - 22 and a good example of that is shown on the
 - 23 screen here, this is the cover of the book
 - 24 entitled, excuse me, Debating Design: From
 - 25 Darwin to DNA , and it was edited by two people,

- 1 William Dembski, who's a philosopher and
- 2 mathematician and intelligent design proponent,
- 3 and Michael Ruse, who's a professor of the
- 4 philosophy of science and a student of Darwinian
- 5 thought, and in this number of academics
- 6 contributed chapters arguing not only about
- 7 intelligent design and Darwinism, but also
- 8 complexity theory, self-organization, and other
- 9 views as well.
- 85 10 Q. And I believe you testified previously
 - 11 that some of the experts that are testifying
 - on behalf of plaintiffs in this case have also
 - 13 contributed chapters to this particular book?
 - 14 A. That's correct. Kenneth Miller has a
 - 15 chapter in there. I think Robert Pennock has
 - 16 a chapter in there as well.
- 86 17 Q. And I believe you also testified during
 - 18 the qualifications portions that you contributed
 - 19 a chapter to a book that was written by Robert
 - 20 Pennock, scientists debating the question of
 - 21 intelligent design?
 - 22 A. That's correct, published by MIT Press.
- 87 23 Q. And there was also a similar book --
 - MR. ROTHSCHILD: Objection, Your Honor.
 - 25 I think it's mischaracterizing the title.

```
1 MR. MUISE: Your Honor, I didn't say what
```

- 2 the title was. It's what the --
- 3 MR. ROTHSCHILD: I think he did say it,
- 4 Your Honor.
- 5 MR. MUISE: The nature of the book. I don't
- 6 believe I stated the title. If I stated the
- 7 title --
- 8 THE COURT: How did he mischaracterize it?
- 9 MR. ROTHSCHILD: He called it scientists
- 10 debating intelligent design, or something to
- 11 that effect. He used the word scientists. It's
- 12 actually Intelligent Design and Its Critics, if
- it's the Pennock edited book.
- 14 MR. MUISE: Okay. I don't see much a
- 15 distinction with that, Your Honor, but --
- MR. ROTHSCHILD: It think it's a loaded
- 17 question.
- 18 THE COURT: Well, for the record you don't
- 19 doubt, Mr. Muise, that's the correct title, or
- 20 do you? Let's just be clear.
- 21 MR. ROTHSCHILD: Sorry, Intelligent Design,
- 22 Creationism, and Its Critics, I am corrected.
- MR. MUISE: I believe that's the correct
- 24 title, Your Honor. I'm just verifying.
- 25 (Brief pause.)

- 1 MR. MUISE: Let's go back to your --
- 2 THE COURT: Just so we're --
- 3 MR. MUISE: I do have it here, Your Honor,

- 4 and I just want to make it clear what the title
- is, and I believe Mr. Rothschild is accurate.
- 6 THE COURT: All right. Then there's no need
- 7 for a ruling on it. You can just clarify it for
- 8 the record.
- 9 BY MR. MUISE:
- 88 10 Q. The book by Robert T. Pennock was entitled
 - 11 Intelligent Design, Creationism and Its Critics:
 - 12 Philosophical, Theological and Scientific
 - 13 Perspectives, is that correct?
 - 14 A. That's correct.
- 89 15 Q. And that book was published by the MIT
 - 16 Press?
 - 17 A. That's correct, yes.
- 90 18 Q. You contributed an article making
 - 19 scientific arguments for intelligent design
 - in that book?
 - 21 A. That's correct, I did.
- 91 22 Q. I should clarify, you submitted a chapter,
 - is that correct?
 - A. Yes that's, right.
- 92 25 O. Were there other scientists who submitted

- 1 chapters in that particular book?
- 2 A. Yes. There were several arguing against

- 3 my ideas and several others arguing on other
- 4 points.
- 93 5 Q. Were these scientists making scientific
 - 6 arguments in that book?
 - 7 A. Yes.
- 94 8 Q. Again similarly I believe there was a book
 - 9 that was edited by John Campbell and Steve Meyer
 - 10 entitle Darwinism: Design in Public Education,
 - 11 is that correct?
 - 12 A. Yes, that's right.
- 95 13 Q. Published by Michigan State University
 - 14 Press?
 - 15 A. Yes, that's correct.
- 96 16 Q. And several scientists and others
 - 17 contributed articles for that particular
 - 18 book, is that correct?
 - 19 A. Yes, that's right.
- 97 20 Q. If I could direct your attention to the
 - 21 exhibit, Tab 13, marked as Defendant's Exhibit
 - 22 266.
 - 23 A. Yes.
- 98 24 Q. Do you know what that, what is Defendant's
 - 25 Exhibit 266?

- 1 A. It is a publication in the journal
- 2 Theoretical Biology by two authors, Richard
- 3 Thornhill and David Ussery entitled A
- 4 Classification of Possible Roots of Darwinian
- 5 Evolution.
- 99 6 Q. And who are Thornhill and Ussery?
 - 7 A. They are two scientists, David Ussery is
 - 8 at the Institute of Biotechnology and Technical
 - 9 University of Denmark and, Technical University
 - of Denmark, and Thornhill I'm not quite sure of.
- 100 11 Q. Is that an article that was published in
 - 12 a scientific journal?
 - 13 A. Yes, the Journal of Theoretical Biology is
 - 14 indeed a scientific journal.
- 101 15 Q. What was that article about?
 - 16 A. As its title implies, it was trying to
 - 17 group, put into groups possible pathways that
 - 18 a Darwinian evolutionary pathway might take,
 - 19 and it was particularly concerned with the
 - 20 problem of irreducible complexity.
- 102 21 Q. Did it particularly refer to irreducible
 - 22 complexity?
 - 23 A. Yes, it did. It refers to irreducible
 - 24 complexity by name I'm certain, virtually
 - 25 certain, and it makes reference to my book

- 1 as well to illustrate the problem.
- 103 2 Q. So would it be fair to say based on these
 - 3 articles and books and symposia that you've been
 - 4 attending that scientists are debating this
 - 5 issue in scientific and academic circles?
 - 6 A. Yes, that's what I would say.
 - 7 MR. MUISE: Your Honor, I'm about to start
 - 8 into another area. I know we've only been going
 - 9 for an hour, but I'm not sure how that'll work
 - 10 out.
 - 11 THE COURT: No, keep going.
 - 12 MR. MUISE: Okay.
 - 13 THE COURT: Because we've not been at it
 - 14 long enough to take a break.
 - 15 BY MR. MUISE:
- 104 16 Q. Dr. Behe, I'd like to return to the concept
 - 17 irreducible complexity, which you testified was
 - 18 a term that you coined in Darwin's Black Box, is
 - 19 that correct?
 - 20 A. Yes, that's right.
- 105 21 Q. Now, you testified that the design
 - 22 arguments speaks of the purposeful arrangement
 - of parts. Are there any other aspects of the
 - 24 design argument?
 - 25 A. Yes, and that's correct. There are other

- 1 aspects, and they're shown on the next slide.
- 2 Just like Ernst Mayr showed that there were
- 3 several aspects to Darwinian theory, there are
- 4 aspects to the intelligent design argument. The
- 5 intelligent design argument itself, the positive
- 6 argument for it is the purposeful arrangement of
- 7 parts, as I have described.
- 8 However, in an inductive argument, if
- 9 somebody else offers a counterexample to the
- 10 induction, then one has to address that to make
- 11 the inductive argument stand. So there's also
- 12 a negative argument which says that despite
- 13 Darwinian claims that the inductive positive
- 14 argument is unrefuted, that is that Darwinism
- 15 cannot account for the purposeful arrangement
- of parts.
- 106 17 Q. So that's your argument against the
 - 18 plausibility of a Darwinian explanation for
 - 19 design, is that correct?
 - 20 A. Yes, that's right.
- 107 21 Q. Do you have several slides that further
 - 22 make this point?
 - 23 A. Yes. Now, what would make Darwinian
 - 24 explanations seem implausible? Well, Charles
 - 25 Darwin himself wrote how his argument could be

- 1 refuted. In his writings in his book On the
- Origin of Species he wrote that, "If it could be
- 3 demonstrated that any complex organ existed
- 4 which could not possibly have been formed by
- 5 numerous successive slight modifications, my
- 6 theory would absolutely break down, " adding,
- 7 "but I can find out no such case."
- 8 In this passage Darwin was emphasizing that
- 9 his was a gradual theory. Natural selection had
- 10 to improve things slowly, in tiny steps over
- long periods of time. If it seemed that things
- were improving rapidly, in big leaps, then it
- would start to look suspiciously as if random
- 14 mutation and natural selection were not the
- 15 cause.
- 108 16 Q. Have other scientists acknowledged that
 - 17 this is an argument against Darwin's theory of
 - 18 evolution?
 - 19 A. Yes. In his book Finding Darwin's God
 - 20 Kenneth Miller has written that, "If Darwinism
 - 21 cannot explain the interlocking complexity of
 - 22 biochemistry, then it is doomed."
- 109 23 Q. I believe we have a quote from another
 - 24 prominent scientist?
 - 25 A. Yes. Richard Dawkins in his recent book

- 1 The Ancestor's Tail, from which I quoted
- 2 recently, wrote "That it is perfectly legitimate
- 3 to propose the argument from irreducible
- 4 complexity, which is a phrase I use, as a
- 5 possible explanation for the lack of something
- 6 that doesn't exist, as I did, for the absence
- 7 of wheeled mammals." Let me take a second to
- 8 explain Dawkins' reference.
- 9 He's saying that this problem is a problem
- 10 for biology, but nonetheless he thinks that
- 11 everything in biology has a Darwinian
- 12 explanation. So that whatever we do see in
- 13 biology necessarily is not irreducibly complex,
- 14 and I think in my opinion that's an example of
- 15 begging the question. But he does recognize the
- 16 concept of irreducible complexity.
- 110 17 Q. Sir, I'd like at this point for you to
 - define irreducible complexity, and we have a
 - 19 slide here.
 - 20 A. Yes, in my article from the journal Biology
 - 21 and Philosophy, I defined it this way. "By
 - 22 irreducibly complex, I mean a single system
 - 23 which is necessarily composed of several well
 - 24 matched interacting parts that contribute to the
 - 25 basic function, and where the removal of any one

of the parts causes the system to effectively

- 2 cease functioning."
- 111 3 Q. Now, you have up there "necessarily"
 - 4 in italics. Is there a reason for that?
 - 5 A. Yes, the definition that I gave in Darwin's
 - 6 Black Box did not have those italicized words
 - 7 necessarily, but after the books came out and an
 - 8 evolutionary biologists at the University of
 - 9 Rochester named Allen Orr pointed out that it
 - 10 may be the case that if you had a system that
 - 11 was already functioning, already doing some
 - 12 function, it's possible for a part to come
 - 13 along and just assist the system in performing
 - 14 its function, but after several changes perhaps
 - 15 it might change in such a way that the extra
 - 16 part has now become necessary to the function of
 - the system but that could have been approached
 - 18 gradually.
 - 19 And I, in thinking about it I saw that he
 - 20 was thinking of examples that I did not have
 - in mind when I wrote the book. So I kind of
 - tweaked the definition here in this article to
 - 23 try to make it clear and try to exclude those
 - 24 examples that I didn't have in mind.
- 112 25 Q. Is it a common practice within the science

- 1 community for a scientist to adjust, modify, or
- 2 tweak their theories based on criticisms that
- 3 they get from other scientists?
- 4 A. Oh, sure. That's done all the time.
- 5 Nobody is perfect, nobody can think of
- 6 everything at once, and a person is always
- 7 grateful for criticism and feedback that helps
- 8 to improve an idea.
- 113 9 O. Does criticism undermine the idea that
 - 10 you were trying to convey by irreducible
 - 11 complexity?
 - 12 A. No, it didn't. It clarified it, and after
 - 13 his, after reading his SI I saw that he was
 - 14 thinking of things that I did not have in mind.
 - 15 So I tried to clarify that.
- 114 16 Q. You have this system in underlying
 - 17 capitalized and in red. What's the purpose
 - 18 for that?
 - 19 A. Well, that to me has turned into a point
 - of confusion because some people, including
 - 21 Professor Miller, have been focusing the
 - 22 discussion on the parts of the system and saying
 - 23 if one removes a part and then can use the part
 - 24 for some other purpose, then they say that means
 - 25 that it's not irreducibly complex, but that is

- 1 not the definition I gave to irreducible
- 2 complexity, that is not the concept of
- 3 irreducible complexity that I described in
- 4 Darwin's Black Box. I said that if you take
- 5 away one of the parts from the system, the
- 6 system, the function of the system itself ceases

- 7 to work, and whether one can use the part for
- 8 anything else is beside the point.
- 115 9 Q. So then it is fair to say Dr. Miller's uses
 - 10 the wrong definition of your concept and then
 - 11 argues against that different definition to
 - 12 claim that your concept is incorrect?
 - 13 A. Yes. It's a mischaracterization, yes.
- 116 14 Q. Now, Dr. Padian testified on Friday that
 - 15 the concept of irreducible complexity applies
 - 16 above the molecular level, is that correct?
 - 17 A. No, that is incorrect. In Darwin's Black
 - 18 Box I was at pains to say that the concept of
 - 19 irreducible complexity applies only to systems
 - where we can enumerate the parts, where we can
 - 21 see all the parts and how they work, and I said
 - 22 that in biology therefore that necessarily means
 - 23 systems smaller than a cell, systems whose
 - 24 active molecular components we can elucidate.
 - When you go beyond a cell, then you're

- 1 necessarily talking about a system, an organ
- or animal or any such thing, that is so complex
- 3 we don't really know what we're dealing with,
- 4 and so it remains a black box, and so the term
- 5 irreducible complexity is confined to molecular
- 6 examples.
- 117 7 Q. Well, I want to read to you several
 - 8 sections, passages from Pandas that Dr. Padian
 - 9 referred to as claiming that this is the concept
 - of irreducible complexity, and I'd like your
 - 11 comment on each one of those as I go through.
 - 12 The first one, "Multifunctional adaptations
 - where a single structure or trait achieves two
 - or more functions at once is taken as evidence
 - 15 by the proponents of intelligent design of their
 - theory," and the reference is page 72 of Pandas.
 - 17 A. Well, if -- I'm sorry, what is the question
 - 18 then?
- 118 19 Q. The question is, is that a definition or
 - 20 is that within your concept of irreducible
 - 21 complexity?
 - 22 A. No, that's not the way I define the term,
 - and I'm not quite sure what he has in mind.
- 119 24 Q. And the second example is, "Proponents
 - of intelligent design maintain that only a

- 1 consummate engineer could anticipate so
- 2 effectively the total engineering requirements
- 3 of an organism like the giraffe." That's a
- 4 citation from page 71. Is that a reference
- 5 to the concept of irreducible complexity?
- 6 A. No, it isn't. Again, irreducible
- 7 complexity focuses on the cell and systems
- 8 smaller, because we have to elucidate all the
- 9 parts, and you have to keep in mind that the
- 10 parts of a biological system are molecular
- 11 parts, even though most people commonly think
- of large organisms. Let me just say that, you
- 13 know, that you should keep in mind that
- 14 Darwinism has other problems beyond irreducible
- 15 complexity. So Pandas might have been pointing
- 16 to those.
- 120 17 Q. Two more such examples. The third one, two
 - 18 more of out of four, this is the third out of
 - 19 four, "But it has not been demonstrated that
 - 20 mutations are able to produce the highly
 - 21 coordinated parts of novel structures needed
 - 22 again and again by macroevolution." And again,
 - 23 is that referring to the concept of irreducible
 - 24 complexity?
 - 25 A. Well, again unless he's referring to the

- 1 molecular level, then no, that is not correct.
- 2 It turned out that molecular changes, small
- 3 changes in DNA can actually cause large changes
- 4 in an organ. You might lose the finger or get a
- 5 duplicate of a finger or some such thing, so you
- 6 have to apply the concept of irreducible
- 7 complexity to the molecular revel.
- 121 8 Q. And the last example, "Design theory
 - 9 suggest that various forms of life began
 - 10 with their distinctive features already intact,
 - 11 fish with fins and scales, birds with feathers,
 - beaks, and wings," that's a reference to page 25
 - of Pandas. Is that a reference to the concept
 - of irreducible complexity?
 - 15 A. No, it is not. Again one more time, the
 - 16 concept of irreducible complexity applies to
 - the molecular level simply because in biology
 - 18 the molecular level is where changes are taking
 - 19 place. There are active components. That's
 - where the rubber meets the road in biology.
 - 21 So one has to restrict one's self to that level.
- - components of the systems?
 - 24 A. Yes, that's the critical thing. We have
 - 25 to see how things are working so we can realize

- 1 what's going on and decide whether or not an
- 2 explanation is plausible.
- 123 3 Q. So it would be fair to say those four
 - 4 examples I read to you may illustrate or
 - 5 highlight other difficulties with Darwin's
 - 6 theory, but they're not specifically addressed
 - 7 in the concept of irreducible complexity?
 - 8 A. Yes, that's right. Just because
 - 9 irreducible complexity is a problem, that
 - doesn't mean that it's the only problem.
- 124 11 Q. Now, again can you give us an example of an
 - 12 irreducibly complex biochemical system?
 - 13 A. Yes, an excellent example is again the
 - 14 bacterial flagellum, which uses a large number
 - of parts in order to function, and again if you
 - 16 remove the components, if you remove the
 - 17 propeller, if you remove the hook region, if
 - 18 you remove the drive shaft or any multiple parts
 - of the flagellum, it does not work. It's ceases
 - 20 to function as a propulsive device.
- 125 21 Q. Now, Professor Miller has testified that
 - 22 the flagellum is not irreducibly complex. Do
 - 23 you agree with him?
 - 24 A. No, I don't.
- 126 25 Q. I'd like for you to go through and explain

- 1 your objections to his claim.
- 2 A. Okay. This is a slide from Professor

- 3 Miller's presentation on the flagellum.
- 4 Let me just first read through the slide
- 5 completely and then I want to point to several
- 6 mischaracterizations that are contained on the
- 7 slide. He writes, "The observation that there
- 8 are as yet no detailed evolutionary explanations
- 9 for certain structures in the cell, while
- 10 correct, is not a strong argument for special
- 11 creation, 'design.' As Michael Behe has made
- 12 clear, the biochemical argument from design
- depends upon a much bolder claim, namely that
- 14 the evolution of complex biochemical structures
- 15 cannot be explained even in principle."
- 16 This has three mischaracterizations I'd
- 17 like to point out in turn. The first one is
- what many people considered to be an informal
- 19 logical fallacy, and that is called poisoning
- 20 the well. It is given the reader a, leading the
- 21 reader to suspect the other person's argument.
- 22 It's kind of a version of an ad hominem
- 23 argument. When he uses the term special
- creation and quotation in design, that looks to
- 25 me like he's indicating to the reader that the

1 people who make these arguments are trying to

- 2 mislead you into thinking that this is design,
- 3 but it's really special creation.
- What's more, again the word creation has
- 5 very negative overtones and is used as a
- 6 pejorative in many academic and scientific
- 7 circles. Furthermore, the phrase special
- 8 creation occurs nowhere in Darwin's Black Box.
- 9 I never used the phrase special creation in
- any of my writings except perhaps to say that
- 11 intelligent design does not require this. And
- 12 so again I think it is a mischaracterization
- and it appears to me an attempt to kind of
- 14 prejudice the reader against this, against my
- 15 argument.
- 16 The second point is this. The second
- 17 mischaracterization is this. He says, "The
- 18 observation that there are as yet no detailed
- 19 evolutionary explanations for certain structures
- 20 in the cell, while correct, is not a strong
- 21 argument for special creation that is 'design.'"
- 22 Here Professor Miller is doing something more
- 23 understandable. He's essentially is viewing my
- theory through the lens of his own theory. So
- 25 all he sees is essentially how it conflicts with

- 1 his own theory and thinks that that's all there
- 2 is to it.
- 3 But as I have explained throughout the day
- 4 today, if we could go to the next slide, that
- 5 an inability to explain something is not the
- 6 argument for design. The argument for design is
- 7 when we perceive the purposeful arrangement of
- 8 parts, the purposeful arrangement of parts such
- 9 as we see in the flagellum, such as we see the
- 10 molecular machinery such as described in that
- 11 special issue of Cell and so on.
- We can go to the next slide, this is a copy
- of the first slide of Professor Miller's, the
- 14 third mischaracterization is this. He says, "As
- 15 Michael Behe has made clear, the biochemical
- 16 argument from design depends upon a much bolder
- 17 claim, namely that the evolution of complex
- 18 biochemical structures cannot be explained even
- in principle." This is a mischaracterization.
- 20 It's essentially absolutizing my argument.
- 21 It's making overstating my argument in order to
- 22 make it seem brittle, to make it more easily
- 23 argued against.
- 127 24 Q. Have you addressed such a claim in Darwin'S
 - 25 Black Box?

- 1 A. Yes, if you read Darwin's Black Box you
- 2 see that I say the following, "Even if a system
- 3 is irreducibly complex and could not have been
- 4 produced directly, however one cannot definitely
- 5 rule out the possibility of an indirect
- 6 circuitous route. As the complexity of an
- 7 interacting system increases though, the
- 8 likelihood of such an indirect route drops
- 9 precipitously."
- 10 So here I was arguing well, there's a big
- 11 problem for Darwinian theory. These things
- can't be produced directly, but nonetheless
- 13 you can't rule out an indirect route, but
- 14 nonetheless building a structure by changing
- its mechanism and changing its components
- 16 multiple times is very implausible and the
- 17 likelihood of such a thing, the more complex
- 18 it gets, the less likely it appears. So the
- 19 point is that I was careful in my book to
- 20 qualify my argument at numerous points, and
- 21 Professor Miller ignores those qualifications.
- 128 22 Q. Do these qualification also demonstrate
 - 23 the tentative nature in which you hold your
 - 24 theories?
 - 25 A. Yes, that's right. I always -- well, I try

1 to state it in what I thought was a reasonable

- 2 way and in a tentative way as well.
- 129 3 Q. I believe we have a couple of more slides
 - 4 from Dr. Miller that you --
 - 5 A. Yes, this is essentially a continuation.
 - 6 These will be slides number 2 and 3 from his
 - 7 slides on the flagellum. This is just a
 - 8 continuation of his overstated arguments.
 - 9 He says, "The reason that Darwinian evolution
 - 10 can't do this is because the flagellum is
 - irreducibly complex," and he quotes my
 - 12 definition of irreducible complexity from
 - 13 Darwin's Black Box, and continue on the next
 - 14 slide.
 - 15 And he states that, "That claim is the
 - 16 basis of the biochemical argument for design."
 - 17 But again that is not the basis for the
 - 18 biochemical argument for design. The basis
 - 19 for the biochemical argument for design is the
 - 20 purposeful arrangement of parts. Irreducible
 - 21 complexity shows the difficulties for Darwinian
 - 22 processes in trying to explain these things.
- 130 23 Q. Now, Dr. Miller claims that natural
 - 24 selection can explain the flagellum. Do
 - 25 you agree with that claim?

- 1 A. I'm sorry, can you restate that?
- 131 2 O. Dr. Miller claims that natural selection
 - 3 can explain the bacterial flagellum. Do you

- 4 agree with that claim?
- 5 A. No, I disagree, and we go on to the next
- 6 slide, which is another one of Professor
- 7 Miller's slides from his presentation on the
- 8 bacterial flagellum, and he tried to explain
- 9 molecular machines using kind of simple concepts
- 10 to try and make it more understandable to a
- 11 broad audience. So for example on the
- 12 right-hand side which he labels "Evolution,"
- 13 he has little colored hexagons, which are exist,
- 14 which are separated, and then he has the
- 15 hexagons forming little groups and arrows
- 16 pointing between the hexagons and the groups of
- 17 hexagons, and finally there is kind of a large
- 18 aggregation of hexagons.
- 19 On this, which he labels "Design," he
- 20 has the colored hexagons separate and arrows
- 21 pointing to a larger aggregation of hexagons.
- Now, I'm sure Professor Miller was trying to
- 23 get across a concept which is difficult, but in
- 24 my viewing and my understanding and presenting
- 25 it this way, this overlooks enormous problems

- 1 that actual molecules would encounter in the
- 2 cell.
- 132 3 Q. Have you addressed these claims in other
 - 4 writings that you have done?
 - 5 A. Yes. Professor Miller has presented
 - 6 exactly the same argument in several other
 - 7 settings, and I have addressed it several
 - 8 times, most recently in my chapter in Debating
 - 9 Design, and if you go to the next slide --
- 133 10 Q. Is this a figure from that book, Debating
 - 11 Design?
 - 12 A. Yes, this is Figure 2 from that chapter.
 - 13 And the slide is entitled "An irreducibly
 - 14 complex molecular machine, can it arise from
 - 15 individual functional precursors." I used little
 - 16 colored squares instead of hexagons, but
 - 17 nonetheless the concept is kind of the same.
 - 18 The colored squares are supposed to represent
 - 19 individual proteins which perhaps existed in
 - 20 the cell already, there is six different ones,
 - 21 and the complex molecular machine now is
 - 22 supposed to be an aggregate of all six proteins
 - 23 with a new function that the system has that the
 - 24 individual parts did not have. Unfortunately
 - 25 while this illustrates, you know, something, it

1 leaves out many concepts which are critical to

- 2 evaluating the likelihood of such a thing. May
- 3 I continue?
- 134 4 Q. Yes, go ahead.
 - 5 A. For example, proteins, the components of
 - 6 molecular machines are not little colored
 - 7 squares. They are not little colored hexagons.
 - 8 They are very complex entities which we will see
 - 9 in a second. Additionally, notice this red
 - 10 square. The red square with the little arrow
 - 11 places it against the green square and the
 - 12 yellow and the blue. Why is it there? Why
 - 13 didn't it go down there? Why is it sticking to
 - 14 B and C and D? Why doesn't it float away?
 - None of those questions are answered, this
 - is an oversimplified way to look at a very
 - 17 complex problem. For example, let me just make
 - 18 one more comment. Notice that in machines in
 - 19 our common experience, if you put a part in a
 - 20 place different from where it usually is, that
 - 21 often times breaks the machine. If in an
 - 22 outboard motor you took the propeller and you
 - 23 put it on top instead of down by the rotor, then
 - 24 the machine would not function. And it's the
 - 25 exact same way for molecular machines.

- 135 1 Q. Have you prepared some slides to
 - 2 demonstrate some of the more complexity
 - 3 of these parts?
 - 4 A. Yes, I'm afraid we're going to have to
 - 5 go a little bit into the complexity of these
 - 6 molecular systems.
 - 7 THE COURT: Do you want to break here,
 - 8 Mr. Muise?
 - 9 MR. MUISE: That would be wonderful, Your
 - 10 Honor.
 - 11 THE COURT: Why don't we do that, let's take
 - 12 a 20-minute break here, and we'll return and
 - 13 we'll pick up with those slides at the end of
 - 14 the recess. We'll be in recess.
 - 15 (Recess taken at 2:48 p.m. Proceedings
 - 16 resumed at 3:13 p.m.)
 - 17 THE COURT: Be seated, please. You can pick
 - it up where you left off, Mr. Muise.
 - 19 CONTINUED DIRECT BY MR. MUISE:
- 136 20 Q. Thank you, Your Honor. Dr. Behe, before we
 - 21 broke we were talking about how proteins aren't
 - 22 simply colored squares or hexagons, that they
 - 23 are far more complex than that, including what
 - 24 makes them stick together in any particular
 - order, and I want to return back to that. We

- 1 put up a slide which has some indication I
- 2 believe of proteins, and I'd like you to explain

- 3 what you meant, that they're more complex than
- 4 just these colored hexagons.
- 5 A. Yes, sure. Let me preface my explanation
- 6 by saying this, that in talking about these
- 7 matters there's kind of, an intelligent design
- 8 proponent and a Darwinian theorist who have
- 9 different goals. A Darwinian wants to persuade
- 10 his audience that evolution isn't all that
- 11 difficult, it's doable, and so will not always
- 12 attend to all the complexity of a system,
- whereas in order to show the difficulties
- 14 for undirected unintelligent processes, an
- 15 intelligent design proponent has to show all
- of the very severe complexity of systems, and
- that's often times hard to do because people
- 18 often times don't have the patience to attend
- 19 to it, but I apologize in advance but I have to
- 20 attend to some of the complexities here.
- 21 So on this slide there are three figures
- 22 taken from a biochemistry textbook by Voet and
- 23 Voet of the protein, of the same protein, a
- 24 protein named hemoglobin. Hemoglobin is the
- 25 protein that binds oxygen and carries it from

- 1 your lungs and dumps it off in peripheral
- 2 tissues such as your fingers and so on. Now,

- 3 this is a rendering of the structure of
- 4 hemoglobin, and actually this rendering itself
- 5 does not show the full complexity of hemoglobin.
- 6 Let's focus --
- 137 7 Q. You're referring to Figure 8-63 on this
 - 8 slide?
 - 9 A. Yes, that's correct. Let's focus on this
 - 10 yellow glob here. You'll notice a number of
 - 11 circles. They represent atoms in one of what
 - 12 are called the protein chains of hemoglobin,
 - 13 but the amino acids in that protein chain are
 - 14 actually different. So if it was actually
 - 15 rendered in more detail you would see a lot of
 - 16 different colors of atoms, indicating different
 - 17 groups and so on, and the identity of all these
 - 18 amino acids is also frequently very critical to
 - 19 the function of a protein.
 - 20 Hemoglobin itself consists an aggregate of
 - 21 four proteins designated here by the blue and
 - 22 the green and the light blue colors, and it is
 - 23 the aggregate of the four protein chains, that
 - 24 is the active molecular machine in this cell
 - 25 that carries oxygen from your lungs to your

- 1 tissues. Nonetheless, a drawing like this of
- 2 such a complex system is often times bewildering

- 3 to students, and so artists with the proper
- 4 purpose of getting across some conceptual points
- 5 to students will draw simplified renditions of
- 6 the same figure.
- 7 For example, in the lower left here this
- 8 is also supposed to be a rendition of the same
- 9 protein hemoglobin. But in here the only atoms
- 10 that are represented are things called the alpha
- 11 carbons of each amino acid, and the artist has
- 12 kind of shaded it to show the different
- directions in which the protein chain is
- 14 heading. One can also to make a legitimate
- point to students simplify the drawing even
- 16 further, and here's another rendering of
- 17 hemoglobin in Voet and Voet.
- 18 Here each very, very complex protein chain
- is rendered as a simple square, and the 0 sub 2
- 20 represents the oxygen that each protein is
- 21 supposed to be carrying. Now, all of these
- 22 are legitimate renderings of the protein
- 23 hemoglobin, but when we discuss these matters
- 24 and we discuss difficulties with evolution and
- 25 we discuss arguments for intelligent design, we

- 1 have to keep in mind that this is the actual
- 2 protein, this is the actual machine in the cell,

- 3 and so these are the things that we have to deal
- 4 with.
- 138 5 Q. Again that last figure you're referring to
 - 6 is 8-63?
 - 7 A. That's right, uh-huh.
- 139 8 Q. And the two previous, the one just previous
 - 9 to that was Figure 10-37 and the one prior to
 - 10 that 10-13?
 - 11 A. That's correct. Now, let's consider
 - 12 a further point. We have this yellow
 - 13 conglomeration of circles representing the
 - 14 atoms of the protein chain, with this blue one
 - and this green one and this light blue one. Why
 - do they stick together? Why don't they just
 - 17 float away? How come they are in the
 - 18 arrangement they are? Why don't we have the
 - 19 yellow one over here? The green one down here?
 - 20 Well, it turns out that proteins arrange
 - 21 themselves. Molecular machines are actually
 - 22 much more sophisticated than the machines of
 - our common experience, because in our common
 - 24 experience with things like say outboard motors,
 - 25 an intelligent agent assembles the parts of

1 those machines. But in the cell the molecular

- 2 machines have to assemble themselves. How do
- 3 they do that? They do it by having surfaces
- 4 which are both geometrically and chemically
- 5 complementary to the proteins to which they're
- 6 supposed to bind, and I think --
- 140 7 Q. Do you have a slide to demonstrate that
 - 8 for us?
 - 9 A. Yes, I do. I think it's the next one.
 - 10 Okay, remember here's another little cartoon
 - 11 version which gets rid of some complexity of
 - 12 the system in order to make an important point
 - 13 to students. This is also a figure taken from
 - 14 the biochemistry textbook Voet and Voet. This
 - is meant to convey why two molecules, why two
 - 16 proteins bind to each other specifically in the
 - 17 cell. This one up here is supposed to represent
 - one protein. The second one is supposed to be
 - 19 this greenish area, and it's supposed to have a
 - 20 depression in it in which the yellowish protein
 - 21 binds to and sticks.
 - Now, let me point out a couple of things.
 - 23 You'll notice that the shapes of the proteins
 - are matched to each other. They're
 - 25 geometrically complementary, kind of like a

- 1 hand in a glove. But not only are they
- geometrically complementary, they're also
- 3 chemically complementary. You see these little

- 4 circles and NH and this thing here? Well, these
- 5 are chemical groups on the surface of the two
- 6 binding proteins, and they attract each other.
- 7 Certain groups attach other groups.
- 8 I think the easiest to understand is the
- 9 one right here, there's a red circle marked with
- 10 a minus sign in it. That indicates an amino
- 11 side chain of a protein that has a negative
- 12 charge. When it binds to the larger one, notice
- 13 that on the surface of the larger protein
- there's this blue circle with a plus sign in it.
- 15 That is taken, that is meant to indicate an
- amino acid side chain with a positive charge.
- 17 Negative and positive charges attract. So
- 18 therefore these guys stick together.
- 19 If this were a negative charge these two
- 20 proteins would not stick together. They would
- 21 float away from each other. It's not sufficient
- 22 to have just one group in the protein be
- 23 complementary to another group in a protein.
- 24 Usually proteins have multiple amino acids that
- 25 stick together and cause them to bind to each

- 1 other. For example, look up here, this little
- 2 circle labeled H. H is supposed to stand for
- 3 something called hydrophobic, which essentially
- 4 means oily. It doesn't like to be in contact
- 5 with water.
- 6 It lines up with another H on the green
- 7 protein so that the two oily groups can stick
- 8 together and avoid water. So it's kind of like
- 9 oil, you know, oil and water, they don't mix.
- 10 If they're in this configuration the two oily
- 11 groups can stick together and be away from
- 12 water, and there are other groups, too, which
- I won't go into which exhibit things call
- 14 hydrogen bonding which also help the proteins
- 15 stick together.
- 16 So in molecular machines, in aggregates
- of proteins, all of the proteins which are
- 18 sticking together have to have all these
- 19 complementary surfaces in order for them to
- 20 bind their correct partners. If they do not
- 21 have the complementary surface, they don't bind
- 22 and the molecular machine does not form. Now,
- 23 interestingly, remember Darwin's theory says
- 24 that evolution has to proceed in small steps,
- 25 tiny steps.

```
1 Well, one way something like this might
```

- 2 form is by, you have to have mutations that
- 3 might produce each of these interactions at a
- 4 time. For example, I think there's a quotation
- 5 from an article in Nature which kind of make
- 6 this point, and I'll explain it after I quote
- 7 it, it's from an article by a man named John
- 8 Maynard Smith, who is a very prominent
- 9 evolutionary biologist who died about a year
- 10 ago I believe, and he wrote in a paper called
- 11 Natural Selection and the Concept of a Protein
- 12 Space, which was published in Nature in 1970,
- "It follows that if evolution by natural
- 14 selection is to occur, functional proteins must
- form a continuous network which can be traversed
- 16 by unit mutational steps without passing through
- 17 nonfunctional intermediates," and by unit
- mutational steps, we mean each of those pluses,
- each of those H's, each of those OH's and so on
- 20 that I showed you in that little cartoon drawing
- 21 on the previous slide.
- 22 If for example a mutation came along that
- 23 changed a positive into a negative charge and
- 24 disallowed an interaction that needed to occur,
- 25 that would be a detrimental one. John Maynard

- 1 Smith is saying that we need to proceed, you
- 2 know, one step at a time. So the point is that
- 3 those little colored squares are enormously
- 4 complex in themselves, and further the ability
- 5 to get them to bind specifically to their
- 6 correct partners also requires much more
- 7 additional information. It is not a single step
- 8 phenomenon. You have to have the surfaces of
- 9 two proteins to match.
- 141 10 Q. A difficulty of getting two changes
 - 11 at once?
 - 12 A. Yes, that's exactly right. If you can
 - do this one tiny, tiny step at a time, then
 - 14 Darwinian evolution can work. If you need to
 - make several changes at once, two, three, four,
 - there were multiple interactions that were
 - 17 required for those two proteins to bind. If
 - 18 you need multiple interactions, the plausibility
 - 19 of Darwinian evolution rapidly, rapidly
 - 20 diminishes.
- 142 21 Q. And have other scientists made similar
 - 22 observations?
 - 23 A. Yes. On the next slide an evolutionary
 - 24 biologist by the name of Allen Orr, who's at the
 - 25 University of Rochester, published an article in

- 1 a journal called Biology entitled A Minimum on
- 2 the Number of Steps Taken in Adaptive Walks in
- 3 which he makes this similar point. He says,
- 4 "Given realistically low mutation rates, double
- 5 mutants will be so rare that adaptation is
- 6 essentially constrained to surveying and
- 7 substituting one mutational step neighbors.
- 8 Thus, if a double mutant sequence is favorable,
- 9 but all single amino acid mutants are
- 10 deleterious, adaptation will generally not
- 11 proceed, " and translating that into more
- 12 colloquial English it means that you have to
- 13 change again those groups one at a time, and
- 14 if you need to change two at a time in order to
- get a favorable interaction, then you are
- 16 running into a big roadblock for Darwinian
- 17 processes.
- 143 18 Q. Now, have you done any writing or research
 - 19 that emphasizes this particular point?
 - 20 A. Yes. On the next slide I believe is a copy
 - of an article that I published with David Smoke
 - 22 which was published last year in the journal
 - 23 Protein Science, which is entitled Simulating
 - 24 Evolution by Gene Duplication of Protein
 - 25 Features that Require Multiple Amino Acid

- 1 Residues, and in this paper we were addressing
- 2 exactly that problem. What happens if you need
- 3 to change a couple of amino acids before you get
- 4 a selective effect?
- 5 And the gist of the conclusion is if you
- 6 need to change two at once or three at once,
- 7 then again the expectation that that will happen
- 8 at a probability becomes much smaller, the
- 9 length of time one would have to wait for such
- 10 a mutation to show up is much longer, the
- 11 population size of a species would have to be
- much, much longer to have an expectation of such
- 13 a mutation occurring.
- 144 14 Q. And this particular article, the one
 - 15 you wrote with David Smoke, you testified to
 - 16 previously?
 - 17 A. Yes, that's the same one.
- 145 18 Q. I believe we have a diagram to further make
 - 19 this point?
 - 20 A. Yes. Here again is a little simplified
 - 21 cartoon version of how proteins might interact,
 - 22 simply to point out the problem that is not
 - 23 apparent in the earlier drawings. Now I've made
 - 24 the shapes of those colored proteins, I've
 - 25 altered the shapes. Now the A is a circle and

1 what's that, a C, the C is a rectangle, and the

- 2 other proteins have other shapes. How do we get
- 3 those to bind into a conglomerate molecular
- 4 machine?
- 5 In order to get them to bind to each other
- 6 we have to alter their surfaces to be
- 7 geometrically and chemically complementary, and
- 8 that is a large and long, tall evolutionary
- 9 order. As a matter of fact, it's so tall that
- one can reasonably conclude that something like
- 11 this would not be expected to occur. So the
- 12 point I want to make here is that even if one
- was to have parts in the cell which if they
- 14 could develop binding sites to bind to each
- other, and if that binding together would
- 16 produce a new selectable property, that still
- does not help in Darwinian processes, because
- 18 you still have the problem of adjusting many,
- 19 many different things before you get the final
- 20 result.
- 146 21 Q. And this diagram is a figure from the
 - 22 chapter that you wrote in Debating Design,
 - is that correct?
 - A. Yes. That's Figure 2.
- 147 25 Q. And that's the chapter that you've already

- 1 testified to previously?
- 2 A. Yes, that's correct.
- 148 3 Q. And I believe we have a slide with the
 - 4 figure legend?
 - 5 A. Yes, that's right. I make this point
 - 6 exactly in my article in that book Debating
 - 7 Design. Let's just look at the bold and
 - 8 underlined text. It's says, "Thus, the problem

- 9 of irreducibility remains even if the separate
- 10 parts originally had individual functions."
- 11 So even if the parts can do something on their
- own, that does not explain how one can get a
- 13 multipart molecular machine in a cell.
- - legend in the figure is from pages 352 to 370
 - 16 in your chapter?
 - 17 A. No, that's the whole chapter. The figure
 - 18 legend is on one of those pages.
- 150 19 Q. As well as that previous diagram?
 - 20 A. Yes, that's correct.
- 151 21 Q. Dr. Behe, if I understand you correctly, so
 - 22 even if there are similar separate parts are in
 - 23 the cell, that doesn't explain irreducible
 - 24 complexity?
 - 25 A. That's correct.

- 152 1 Q. Dr. Miller testified about something
 - 2 called the Type 3 secretory system, the TTSS,
 - 3 and he said that that showed that the flagellum

- 4 was not irreducibly complex, do you agree
- 5 with that assessment?
- 6 A. No, I disagree. That's a
- 7 mischaracterization.
- 153 8 Q. Why do you disagree?
 - 9 A. Well, I think we have some slides from
 - 10 Professor Miller's presentation, and he said
 - 11 that, let us start with the bacteria flagellum,
 - 12 and he has a drawing of the flagellum from a
 - 13 recent paper. Let me just make another similar
 - 14 point. You see these little three, four-letter
 - abbreviations all over here? Each one of those
 - is of the complexity of a hemoglobin molecule
 - 17 that I showed on an earlier slide. Each one of
 - 18 those has all the sophistication, all the needs
 - 19 to have very complex features to bind together
 - 20 that hemoglobin had.
 - 21 Can you press the slide again to advance
 - the figure on this same thing of Professor
 - 23 Miller's? Professor Miller says that well,
 - okay, you start with the bacterial flagellum,
 - and if you remove the pieces, then he says,

- 1 press again, please, he says, "That leaves just
- ten, " and he says, his characterization, his
- 3 mischaracterization of my argument is that
- 4 what's left behind should be non-functional.
- 5 And if we go to the next slide of Professor
- 6 Miller's, he says, "But it's not. Those ten
- 7 parts are fully functional as a protein
- 8 secretion system," but again I tried to be very
- 9 careful in my book to say that we are focusing
- 10 on the function of the system, of the bacterial
- 11 flagellum, and while a subset of the flagellum
- might be able to be used as something else, if
- 13 you take away those parts it does not act as a
- 14 rotary motor. So it is irreducibly complex as I
- 15 tried to carefully explain. I'm sorry.
- 154 16 Q. So is it fair to say that Dr. Miller makes
 - 17 a misrepresentation of what your claim is by his
 - 18 representation?
 - 19 A. This is a mischaracterization, yes, that's
 - 20 correct, and I think I pointed that out on the
 - 21 next slide. I pointed this out, as I said
 - 22 earlier we've debated this back and forth for
 - 23 a while. I pointed it out recently in my book
 - 24 chapter. I write, "Miller asserted that the
 - 25 flagellum is not irreducibly complex because

1 some proteins of the flagellum could be missing,

- 2 and the remainder could still transport proteins
- 3 perhaps independently.
- 4 "Again he was equivocating, switching the
- 5 focus from the function of the system to act as
- 6 a rotary propulsion machine to the ability of a
- 7 subset of the system to transport proteins
- 8 across a membrane. However, taking away the
- 9 parts of flagellum certainly destroys the
- 10 ability of the system to act as a rotary
- 11 propulsion machine as I have argued. "Thus,
- 12 contra Miller, the flagellum is indeed
- irreducibly complex."
- 155 14 Q. Dr. Behe, even if that is true, doesn't the
 - 15 Type 3 secretory system help us to explain the
 - 16 flagellum, the development of the flagellum?
 - 17 A. No, it does not help in the least. And
 - 18 that may be surprising to some people, so let
 - 19 me take a second to explain. Most people when
 - 20 they see an argument such as Professor Miller
 - 21 presents will naturally assume that well,
 - 22 perhaps this part, this system that had fewer
 - 23 parts, the Type 3 secretory system, maybe that
 - 24 was a stepping stone, maybe that was an
 - intermediate on the way to the more complex

- bacterial flagellum.
- 2 But in fact a number of scientists have
- 3 said that's not true, and perhaps we could see

- 4 the next slide. Yes, thank you. For example,
- 5 in a paper published by Nguyen, et al. five
- 6 years ago they investigated the Type 3 protein
- 7 secretion system, and they said the following,
- 8 "We suggest that the flagellar apparatus was the
- 9 evolutionary precursor of Type 3 protein
- 10 secretion systems."
- In other words, they're saying that from
- 12 their investigation it looked like the more
- 13 complex type or more complex flagellum came
- 14 first, and then the system with fewer parts,
- 15 the Type 3 secretory system came second and
- 16 perhaps was derived from that. Exactly what
- 17 the opposite of what one might first expect.
- 156 18 O. Have scientists reached different
 - 19 conclusions?
 - 20 A. Yes, and it turns out that other groups
 - 21 have reached different conclusions from those
 - of Nguyen at all. For example, in a paper
 - 23 published by Gophna, et al. recently in 2003 in
 - 24 the journal Gene they write, "The fact that
 - 25 several of the Type 3 secretory system proteins

- 1 are closely related to flagellar export protein
- 2 has led to the suggestion that the TTSS has
- 3 evolved from flagella. Here we reconstruct the
- 4 evolutionary history of four conserved Type 3
- 5 secretion proteins and their phylogenetic
- 6 relationships with flagellar paralog." And
- 7 then they say, "The suggestion that Type 3
- 8 secretory system genes have evolved from genes
- 9 and coding flagellar proteins is effectively
- 10 refuted." In other words. They say that
- 11 the conclusion of the first group was incorrect.
- 12 Instead they suggest that the Type 3 secretory
- 13 system and the flagellum developed independently
- of each other, perhaps from the same precursor
- 15 gene. And I think on the --
- 157 16 Q. We have another study on this issue,
 - 17 correct?
 - 18 A. Yes. I think that's right. In the year
 - 19 2004 a man named Milton Sayer, who was the one
 - of the authors, the senior author actually on
 - 21 the study by Nguyen, et al. that I referred to a
 - 22 couple of slides ago, wrote an article in a
 - 23 journal called Transient Microbiology called
 - 24 Evolution of Bacterial Type 3 Protein Secretion
 - 25 Systems, he says the following, "It is often

- 1 not possible to prove directionality of an
- 2 evolutionary process. At present, too little
- 3 information is available to distinguish between

- 4 these possibilities with certainty. As is often
- 5 true in evaluating evolutionary arguments, the
- 6 investigator must rely on logical deduction and
- 7 intuition.
- 8 "According to my own intuition and the
- 9 arguments discussed above, I prefer pathway
- 10 2 for the Type 3 system deriving from the
- 11 flagellum. What's your opinion?" So I think
- 12 you can see from this the very tentative nature
- of the results regarding the Type 3 secretory
- 14 system and the flagellum that in fact what is
- 15 going on is very much up in the air.
- 158 16 Q. And again I believe we have another result
 - 17 from --
 - 18 A. Yes. Let me apologize that again this is a
 - 19 complex subject, and so you really have to delve
 - 20 into it to come to a firm conclusion. This is a
 - 21 quotation from a review article by a man named
 - 22 Robert Macnab who was a professor of biology at
 - 23 Yale University who died in the year 2003, and
 - 24 this article was actually published
 - 25 posthumously. It's entitled Type 3 Flagellar

- 1 Protein Export and Flagellar Assembly. It was
- 2 published in journal Biochemica Biophysica Acta,

- 3 and I underlined words that emphasized the
- 4 tentativeness and the speculative nature of
- 5 discussions on this topic.
- 6 Robert Macnab wrote, "It has been suggested
- 7 that the Type 3 virulence factor secretion
- 8 system evolved from the Type 3 flagellar protein
- 9 export system since flagella are far more
- 10 ancient, existing in very diverse genre than
- 11 the organisms which are targets for Type 3
- 12 virulence systems. However, it is possible that
- 13 the original targets were other bacteria. Also,
- 14 the possibility of lateral gene transfer cannot
- 15 be ruled out.
- 16 "Finally, one could argue that evolution
- 17 from a less complex structure, the needle
- 18 complex, to a more complex one, the flagellum,
- is more probable than the other way around,"
- 20 and he continues I think on the next slide, and
- 21 I think I'll pass over much of this quotation
- 22 and just go to the last line of his article, and
- 23 he says, "As the above discussion indicates,
- 24 there is much about the evolution of Type 3
- 25 systems that remains mysterious."

- 1 So let me point out that in the past couple
- of years we've had investigators suggest that in
- 3 fact the flagellum came first and the Type 3
- 4 secretory system came after it. We've had other
- 5 investigators suggest that the Type 3 secretory
- 6 system came first and the flagellum came after
- 7 it. We've had other investigators suggest that
- 8 the Type 3 secretory system and the flagellum
- 9 arose independently, perhaps from similar genes,
- 10 so --
- 159 11 Q. Dr. Behe, so what do these widely different
 - 12 opinions mean?
 - 13 A. Well, maybe we could go to the next slide.
 - 14 To me it means this. We see the little cartoon
 - drawing of the flagellum here, and this is a
 - 16 cartoon drawing of the Type 3 secretory system.
- 160 17 Q. I'm sorry, this is one of Dr. Miller's
 - 18 slides?
 - 19 A. I'm sorry, yes. This is Dr. Miller's
 - 20 slide. Science knows a lot of information
 - 21 about the structure of the Type 3 secretory
 - 22 system, a lot of information about the structure
 - 23 and function of the flagellum. It knows the
 - 24 sequences of proteins of the flagellum. It
 - 25 knows the sequences of the proteins of the Type

1 3 secretory system. It sees many similarities

- 2 between them, both in the amino acid sequence
- and function, and it still can't tell how one
- 4 arose or whether one arose first, the other
- 5 second, or whether they arose independently.
- 6 So this to me drives home the point that
- 7 such information simply does not come out of
- 8 Darwinian theory. Much like our discussion of
- 9 Haeckel's embryos earlier in the day, Darwinian
- 10 theory can live with any result that
- 11 experimental science comes up with on this
- 12 question and then goes back and tries to
- 13 rationalize the results afterwards post hoc,
- 14 and so to a person like myself this exemplifies
- 15 the fact in fact these results have nothing to
- do with Darwinian theory. They are no support
- 17 at all for the claim that natural selection
- 18 could have produced them. Quite the contrary.
- 161 19 Q. I just need to backtrack for one moment.
 - 20 If I may approach the witness, Your Honor?
 - 21 THE COURT: You may.
- 162 22 Q. Dr. Behe, I handed you what's been marked
 - 23 as Defendant's Exhibit, 238 correct?
 - 24 A. Yes.
- 163 25 Q. Is that the study from Nguyen that you

- 1 referenced in your testimony on the section
- of the Type 3 secretory systems?
- 3 A. Yes, that's correct.
- 164 4 Q. It was inadvertently left out of your book,
 - 5 but I just wanted to make sure you identified it
 - 6 as an exhibit. You can just keep that with you
 - 7 and I'll retrieve it later.
 - 8 A. Thank you.
- 165 9 Q. I want to see if I can get you correct,
 - 10 Dr. Behe. It's your opinion that this also
 - 11 shows that even knowledge of the structure and
 - 12 sequences of two systems doesn't necessarily
 - give a clue as to how these systems might have
 - 14 arisen, is that true?
 - 15 A. That's exactly right.
- 166 16 Q. And could you explain that further? And
 - 17 I believe we have some additional slides for
 - 18 that.
 - 19 A. Yes, I think some text with actually
 - 20 Professor Padian wrote as part of his expert
 - 21 report illustrates this problem, and I'd like
 - 22 to quote you several sections from that report.
 - 23 On the next slide Professor Padian said the
 - 24 following. He said that, "Darwin's main
 - 25 concern, however, was with the mechanism of

- 1 natural selection, which cannot be observed
- directly in the fossil record."
- 3 So to me this means you cannot see natural
- 4 selection. You see fossils, and how you
- 5 classify those fossils and what explanations
- 6 you come up with them is not based directly on
- 7 the evidence. Rather, it's provided by your
- 8 theory. And I think we have a further quote
- 9 from Professor Padian. He said the following,
- 10 and this is a long quote, so --
- 167 11 Q. If you could read it a little bit slower
 - 12 for our court reporter when you are reading
 - 13 these quotes, please? Thank you.
 - 14 A. Okay. "Molecular biology has produced
 - 15 tremendously powerful tools to compare the DNA
 - 16 sequence of all manner of living organisms, and
 - 17 a few extinct ones, and so help to derive their
 - 18 evolutionary relationships. However, molecular
 - 19 systematics can say nothing about the
 - 20 relationship or role of fossil organisms to
 - 21 each other or to living lineages," and he gives
 - 22 an example.
 - "For example, several recent molecular
 - 24 analyses agree that whales and hippos are each
 - other's closest relatives. From this conclusion

- 1 some authors have suggested that because both
- 2 kinds of animals spend time in the water, their

- 3 common ancestors would have been aquatic. Only
- 4 the fossil record could show that this inference
- 5 is incorrect. Therefore, hippos and whales,
- 6 even if they are each other's closest relatives
- 7 among living animals, did not have a common
- 8 ancestor that lived in the water, but that was
- 9 terrestrial. Only paleontological research and
- 10 materials could demonstrate this."
- 11 And let me make a point about this.
- 12 Professor Padian is saying that molecular
- 13 studies of DNA sequence of whales and hippos
- 14 suggested or led to the suggestion that both
- 15 animals had aquatic ancestors. But they didn't.
- 16 They had terrestrial ancestors. That means that
- 17 the molecular information is compatible with
- 18 either result, with the ancestors being aquatic
- 19 or the ancestors being terrestrial.
- 20 That means that the molecular information
- 21 can't decide what the ancestors were and
- therefore it can't tell what the selective
- 23 pressure was or other factors of what might
- 24 have caused an ancestor of those organisms to
- 25 produce what we see in the modern world. So

- 1 that means that does not speak to Darwin's claim
- 2 that natural selection drove evolution, okay?
- 3 Well, molecular data can't decide the question.
- 4 But nonetheless, Professor Padian told us
- 5 that paleontology did. Paleontology discovered
- 6 what seemed to be ancestor of both hippos and
- 7 whales, and saw that they are terrestrial
- 8 organisms. So can paleontology tell us whether
- 9 it was natural selection that drove the
- 10 evolution of these organisms? Well, no. Or
- the previous slide he said explicitly natural
- 12 selection is not shown directly in the fossil
- 13 record.
- 14 That means that there is nothing that can
- show from the fossil record or from molecular
- data that current organisms derive by a process
- of natural selection from organisms in the past
- or how such a thing might have happened. That
- 19 means that in fact the inference that such a
- 20 thing did is simply a theoretical construct in
- 21 which we try to fit that data into our current
- 22 theory. The current theory either predicts it,
- 23 does not predict it, and may be consistent with
- 24 such evidence, but a lot of theories might be
- 25 consistent with the same evidence.

- 1 And I think that, bring it back to the
- 2 flagellum, I think that's illustrated in the
- 3 flagellum and Type 3 secretory system 2. We
- 4 know all the molecular data, we know lots of
- 5 structural and functional studies, and yet we
- 6 still can't tell how natural selection could
- 7 have produced them.
- 168 Q. So are you saying then at best the
 - 9 evidence, and you were talking about sequence
 - 10 comparisons and in particular the fossil record,
 - 11 at best they may be consistent with natural
 - 12 selection but they also may be consistent with
 - any number of mechanisms that might be derived?
 - 14 A. That's exactly right. Perhaps intelligent
 - design, perhaps complexity theory, perhaps
 - 16 something else. But consistent does not, is
 - 17 not the same thing as evidence for a theory.
- 169 18 Q. And the next slide we have is another quote
 - 19 from Dr. Padian that I'd like you to comment
 - 20 about.
 - 21 A. I think this also throws light on this
 - 22 topic. Professor Padian said in his expert
 - 23 statement, he said, "Darwin was not talking
 - 24 about how major new adaptive change took place.
 - 25 He was talking about how minor variations could

- 1 be selected. He was really talking about the
- 2 baby steps of evolution. He made only the most
- 3 passing references to how new major adaptive
- 4 types might emerge, " and I could comment that
- 5 no one disputes or certainly no one I'm aware of
- 6 disputes that Darwinian processes, Darwinian
- 7 mechanism, can explain some things in life. And
- 8 certainly nobody disputes that baby steps could
- 9 be explained by random mutation and natural
- 10 selection. It is exactly the new major adaptive
- 11 types and new molecular systems for myself as a
- 12 biochemist that is the focus of dispute.
- 170 13 Q. So again though when you say nobody
 - 14 refutes, is that saying that intelligent design
 - does not refute this notion of baby steps that
 - 16 Dr. Padian is referring to?
 - 17 A. That's right. It is very happy to say that
 - Darwinian processes are consistent with those.
- 171 19 O. Here I believe is a continuation of that
 - 20 particular statement from his report.
 - 21 A. Yes, this is Professor Padian continued,
 - 22 referring to Darwin, he said, "Though he was
 - 23 convinced that would happen in the course of
 - 24 time," and let me just comment on that. Well,
 - 25 that's interesting that he was convinced that

- 1 would happen, but another way of saying that is
- 2 that Darwin assumed that these small changes
- 3 would add up to larger changes, or to major new
- 4 adaptive features, but that is exactly the point
- 5 of contention. And for a point of contention an
- 6 assumption is not evidence, let alone proof. So
- 7 I see this as very pertinent to the question of
- 8 things like the flagellum Type 3 secretory
- 9 system and other things as well.
- 172 10 Q. So is it clear, I guess in summarizing you
 - 11 think that the flagellum is in fact irreducibly
 - 12 complex, correct?
 - 13 A. Yes, that's right.
- 173 14 Q. Does that affect necessarily the positive
 - 15 argument for intelligent design?
 - 16 A. Well, yes. Let's perhaps we can look at
 - another slide here that I just wrote out some
 - 18 text to make this point clear. It's this. For
 - 19 the past number of, past hour or so we've been
 - 20 talking about the argument against Darwinian
 - 21 processes, but I want to re-emphasize to say
 - 22 that it is important to keep in mind that the
 - 23 positive inductive argument for design is in
 - the purposeful arrangement of parts.
 - 25 Irreducible complexity, on the other hand,

- 1 is an argument to show that Darwinism, the
- 2 presumptive alternative to design, is an
- 3 unlikely explanation. However, one also has
- 4 to be careful to remember that Darwinism isn't
- 5 positively demonstrated by attacks on the
- 6 concept of irreducible complexity. Darwinism
- 7 can only be positively supported by convincing
- 8 demonstrations that it is capable of building
- 9 the machinery of the degree of complexity found
- 10 in life. In the absence of such convincing
- 11 demonstration it is rationally justified
- 12 to think that design is correct.
- 174 13 Q. So an argument against irreducible
 - 14 complexity is not necessarily an argument
 - 15 against design?
 - 16 A. An argument against irreducibly complexity
 - is not an argument against design, and more
 - importantly it's not an argument in favor of
 - 19 Darwinian evolution.
- 175 20 Q. Have other scientists agreed that Darwinian
 - 21 theory has not yet explained complex biochemical
 - 22 systems?
 - 23 A. Yes. I recall there on that slide that I
 - 24 say Darwinism can only be positively supported
 - 25 by convincing demonstrations, and almost

- 1 everybody agrees that such demonstrations have
- 2 not yet been forthcoming. For example, on the
- 3 next slide these are quotations taken from a
- 4 number of reviews of my book Darwin's Black Box,
- 5 most of these are by scientists. The first one
- 6 James Shreeve, a science writer, but all of them
- 7 making the point that we do not yet have
- 8 Darwinian explanations for such complex
- 9 structures.
- 10 For example, James Shreeve, the science
- 11 writer, writing the New York Times said,
- 12 "Mr. Behe may be right that given our current
- 13 state of knowledge, good old Darwinian evolution
- 14 cannot explain the origin of blood clotting or
- 15 cellular transport," and James Shapiro, who is a
- 16 professor of microbiology at the University of
- 17 Chicago, wrote in a review that, "There are no
- 18 detailed Darwinian accounts for the evolution of
- 19 any fundamental biochemical or cellular system,
- 20 only a variety of wishful speculations."
- 21 Jerry Coyne, who's a professor of
- 22 evolutionary biology at the University of
- 23 Chicago wrote in a review of the book in the
- journal Nature, "There is no doubt that the
- 25 pathways described by Behe are dauntingly

- 1 complex, and their evolution will be hard to
- 2 unravel. We may forever be unable to envisage
- 3 the first protopathways."
- 4 And Andrew Pomiankowski, who is an
- 5 evolutionary biologist I believe at the
- 6 University College London, wrote in a review
- 7 in New Scientist, "Pick up any biochemistry
- 8 textbook and you will find perhaps two or three
- 9 references to evolution. Turn to one of these
- and you will be lucky to find anything better
- 11 than 'evolution selects the fittest molecules
- 12 for their biological function.'"
- 13 So this is a sampling of writings by
- 14 scientists agreeing with the point that no,
- 15 we do not have these demonstrations yet that
- 16 Darwinian processes can produce complex
- 17 biological systems.
- 176 18 Q. And these were scientists, and in one case
 - 19 a science writer, who are commenting on your
 - 20 particular book, correct?
 - 21 A. Yes.
- 177 22 Q. And have scientists in other contexts made
 - 23 similar claims?
 - A. Yes, another good comment on this was by
 - 25 Franklin Harold, who I mentioned before, he's

- 1 an emeritus professor of biochemistry at
- 2 Colorado State University, and in his book The
- 3 Way of the Cell published by Oxford University
- 4 Press in 2001 he kind of echos James Shapiro.
- 5 He says, "We must concede that there are
- 6 presently no detailed Darwinian accounts of the
- 7 evolution of any biochemical system, only a
- 8 variety of wishful speculations," and perhaps
- 9 I might add that besides these people one can
- 10 add also complexity theorists, who also like
- 11 Stuart Kauffman who also deny that such things
- 12 have been explained in Darwinian theory.
- 178 13 Q. Sir, have some scientists argued that
 - 14 there is experimental evidence that complex
 - 15 biochemical systems can arise by Darwinian
 - 16 processes?
 - 17 A. Yes, there have been a total of two such
 - 18 arguments which I regard to be very important,
 - 19 because these were claims that there had been
 - 20 experimental demonstrations, not just
 - 21 speculations, not just stories, but experimental
 - 22 demonstrations that either irreducible
 - 23 complexity was incorrect or that complex
 - 24 systems could be built by Darwinian processes.
- 179 25 Q. And one of those claims was raised by

- 1 Dr. Miller, is that correct?
- 2 A. That's correct. I think on the next slide
- 3 we see that he wrote in his book Finding
- 4 Darwin's God , which was published in 1998, he
- 5 said, "A true acid test used the tools of
- 6 molecular genetics to wipe out an existing
- 7 multipart system and then see if evolution can
- 8 come to the rescue with a system to replace it."
- 9 So here he was making the point well, here
- 10 one test of this claim of irreducible complexity
- and the ability of Darwinian processes to make
- 12 complex systems, well, is to find a complex
- 13 system in a cell, destroy it, and then see if
- 14 random mutation and natural selection can come
- 15 back and replace it. And I have to say I agree
- that's an excellent test of that claim. However,
- 17 I disagree with Professor Miller's further
- 18 comments and conclusions.
- 180 19 Q. What was the particular system that he was
 - 20 looking at?
 - 21 A. Well, he was referring to what is shown in
 - 22 a little cartoon version on the next slide.
 - 23 This is a figure again taken from that
 - 24 biochemistry textbook by Voet and Voet
 - 25 discussing a system called the lac operon.

- 1 Now, an operon is a little segment of DNA in
- 2 a bacteria which codes for a couple of genes,
- 3 and genes code for proteins, and the proteins
- 4 usually have related functions or function as a
- 5 group, and one of them is called the lac operon
- 6 which is used to, the proteins of which are
- 7 necessary for the bacterium Escherichia coli to
- 8 metabolize a sugar called lactose, which is a
- 9 milk sugar.
- 10 And it consists of a number of parts. No,
- let's go back one slide, please, I'm sorry. All
- 12 these little squares here, this little green
- thing represents a very complex protein called
- 14 a repressor, which will bind to the DNA, and
- when it binds there it stops another protein
- 16 called an RNA prelimerase from binding to the
- same spot, and therefore the information carried
- 18 by these genes is not expressed, and that's
- 19 important because the sugar lactose is usually
- 20 not present in the bacteria's environment, and
- 21 making proteins that metabolize lactose in the
- 22 absence of that sugar would be wasting energy.
- 23 So the bacterium wants to keep that turned
- off until lactose is around. So the repressor
- 25 turns off the operon, and that means that the

- 1 genes for these three proteins here are not
- 2 turned on, not expressed. This first one, which
- 3 is labeled Z, codes, is the gene for a protein
- 4 called a beta galactosidase, okay? That's
- 5 actually the enzyme which chops up lactose.
- 6 We don't have to go into the detail of how
- 7 that happens.
- 8 This little thing marked Y codes for
- 9 something called a permease. Now, a permease
- 10 it turns out is a protein who is job it is to
- 11 allow the lactose to enter the bacterial cell.
- 12 The bacterial cell is surrounded by a membrane
- which generally acts as a barrier to largish
- 14 molecules, and there's this specialized protein,
- this specialized machine called a permease
- which, when lactose is around, grabs the lactose
- from outside the cell, turns it around, and
- 18 allows it to enter to the inside of the cell.
- In the absence of that permease the lactose
- 20 might be present in abundance in the bacteria's
- 21 environment, but it can't get inside the cell.
- 22 And so the bacterium can't use it. One other
- 23 detail of this before I go on is that this
- 24 repressor kind of sticks to the beginning of
- 25 the gene and turns it off, but when lactose is

- 1 present in the environment a small molecule
- 2 which is a derivative of lactose can bind to the
- 3 repressor, and that, and again start thinking in
- 4 terms of the complex shape and structure of
- 5 hemoglobin, when that happens it interacts in
- 6 specific ways in order and causes the shape of
- 7 the repressor to change, and that changed shape
- 8 makes it now no longer geometrically and
- 9 chemically complementary to the site that it
- 10 bound on the lac operon, and it falls off.
- 11 So in the presence of the inducer the repressor
- 12 falls off, this prelimerase can come along and
- 13 those proteins get made in the cell.
- 181 14 Q. Would you like the next slide?
 - 15 A. Yes, thank you. Now I'm going to simplify,
 - 16 after that discussion I'm going to try to
 - 17 simplify nonetheless. So let me just list
 - 18 some parts of the lac operon. There's the
 - 19 galactosidase, the repressor, the permease, all
 - 20 three of which are proteins, and something that
 - 21 I've written IPTG/allolactose. That is the
 - 22 small molecule which can bind to the repressor
 - and cause to it fall off of the operon,
 - 24 allolactose is something, is a metabolite
 - of lactose itself, and that's the substance

- 1 which usually binds to the repressor in the
- 2 cell, but there's also an artificial chemical
- 3 called IPTG, which stands for isopropyl
- 4 thiogalactoside, which is sold by chemical
- 5 supply companies, which mimics the action of the
- 6 allolactose, and when a scientist comes and
- 7 dumps some IPTG into the beaker, that binds to
- 8 the repressor and causes those genes to be
- 9 expressed, to be turned on.
- 10 Okay, those are the parts of the lac
- 11 operon. Now, for purposes of further
- 12 illustration let me just mention that in
- 13 E. coli there are thousands of genes, and many
- of them are grouped into operons. Unbeknownst
- 15 to the experimenter, whose name is Barry Hall,
- there also existed in the E. coli another operon
- 17 called the EBG operon, which he called it that
- 18 because it stands for evolved beta
- 19 galactosidase. He thought this protein evolved
- in response to the selective pressure that he
- 21 put on it, and it turns out that that operon
- 22 also codes for a galactosidase, another
- 23 galactosidase and another repressor as well.
- 182 24 Q. So this was the system that Dr. Miller was
 - 25 talking about in --

- 1 A. Yes, I'm afraid this is the background for
- 2 the system that he started to discuss in his
- 3 book.
- 183 4 Q. Which he sees it as experimental evidence
 - 5 to refute the irreducible complexity claim?
 - 6 A. Yes, that's right, and if you look on the
 - 7 next slide you'll see the part of his book where
 - 8 he discusses that. He says of the system, he
 - 9 says, "Think for a moment. If we were to happen
 - 10 upon the interlocking biochemical complexity of
 - 11 the re-evolved lactose system, wouldn't we be
 - impressed by the intelligence of its design.
 - 13 Lactose triggers a regulatory sequence that
 - switches on the synthesis of an enzyme that then
 - 15 metabolizes lactose itself.
 - 16 "The products of that successful lactose
 - 17 metabolism then activate the gene for the lac
 - 18 permease, which ensures a steady supply of
 - 19 lactose entering the cell. Irreducible
 - 20 complexity, what good would the permease be
 - 21 without the galactosidase? No good of course."
 - 22 And he continues that same discussion on the
 - 23 next slide, he continues, "By the very same
 - logic applied by Michael Behe to other systems,
 - 25 therefore, we can conclude that this system had

- 1 been designed, except we know that it was not
- designed. "We know it evolved, because we
- 3 watched it happen right in the laboratory. No
- 4 doubt about it, the evolution of biochemical
- 5 systems, even complex multipart ones, is
- 6 explicable in terms of evolution. Behe is
- 7 wrong."
- 184 8 Q. Is Dr. Miller right?
 - 9 A. No. Dr. Miller is wrong. Now, Professor
 - 10 Miller is always enthusiastic and he always
 - 11 writes and speaks with great excitement, but I
 - 12 say that when you examine his arguments closely,
 - under close inspection they simply don't hold up
 - 14 and this is enormously exaggerated, and the
 - 15 results of researcher Barry Hall that he is
 - 16 describing here I would happily have included
 - 17 as an example of irreducible complexity in
 - 18 Darwin's Black Box.
 - 19 So let me please try to explain why I say
 - 20 that. Reading Professor Miller's prose one
 - 21 would get, and I certainly did get when I first
 - 22 read it, the impression that this system was
 - 23 completely knocked out in that it completely
 - 24 came back under the experiments that Barry Hall
 - 25 conducted. But it turns out of this multipart

- 1 system, only one part, the protein beta
- 2 galactosidase, was knocked out by experimental
- 3 method.
- 4 Everything else, the repressor, the
- 5 permease, and we'll see later IPTG, and
- 6 importantly as well other proteins which did
- 7 very, very similar jobs in the cell, were left
- 8 behind. And the worker Barry Hall himself was
- 9 always very careful to say that he was only
- 10 knocking out that one protein.
- 185 11 Q. The galactosidase?
 - 12 A. Yes, that's correct. I think on the next
 - 13 slide he makes that point. This is a quotation
 - 14 from a paper by Professor Hall recalling his
 - 15 experiments that he did earlier on the lac
 - operon. He says the following, "All of the
 - 17 other functions for lactose metabolism,
 - including lactose permease and the pathways
 - 19 for metabolism of glucose and lactose, the
 - 20 products of lactose hydrolysis, remain intact.
 - 21 Thus, reacquisition of lactose utilization
 - 22 requires only the evolution of a new, " and this
 - 23 should be a beta, "beta galactosidase function."
 - 24 So let me point out that what he did in his
 - 25 laboratory was to take an E. coli bacterium and

- 1 using molecular biological methods to knock out
- 2 or destroy the gene for that one part of the loc
- 3 operon, the beta galactosidase. He left the
- 4 permease intact, he left the repressor intact,
- 5 everything else was intact. He just had to get
- one more component of the system.
- 7 And what he saw was that he did get
- 8 bacteria that were again able to use lactose.
- 9 And when he did the experiments in the 1970's,
- 10 that's all he saw. He saw he had bacteria that
- 11 could grow when they were fed lactose. But
- 12 years later after methods had developed and
- after he had the ability to do so, he asked
- 14 himself what protein was it that took over the
- 15 role of the beta galactosidase, and he named it
- 16 EBG, evolved beta galactosidase.
- 17 But when he looked at it further he found
- 18 it to be a very similar protein to the one that
- 19 he had knocked out. Essentially it was almost
- 20 a spare copy of the protein that had been
- 21 destroyed. So this slide makes a couple of
- 22 points. Let me just point to a couple. The
- 23 EBG protein that took the place of the beta
- 24 galactosidase is homologous to lac proteins.
- 25 That's a technical term, that means they're

- 1 very similar. Their protein structures, their
- 2 sequences are pretty similar, and odds are
- 3 good that they have the same sort of activity.
- 4 What's more, after further investigation
- 5 Professor Hall showed that even the unmutated,
- 6 even the EBG galactosidase before he did his
- 7 experiment, the unmutated galactosidase could
- 8 already hydrolyze, although it was inefficient.
- 9 So again this was almost a spare copy of the
- 10 protein, and I think on the next slide, I'll
- 11 skip that last point on the next slide to drive
- 12 home the point I want to show you what are the
- amino acid sequences of the area around what's
- 14 called the active site of the protein, which is
- 15 kind of the business end where the lactose binds
- and where the chemical groups reside which will
- 17 cause it to be hydrolyzed into two component
- 18 parts.
- 19 Notice this. Look at these sequence of
- 20 letters. Now, I know that they don't mean much
- 21 to most people in here, but notice the sequence
- of letters, these are the amino acid sequences,
- 23 abbreviations for the amino acid sequence of
- various beta galactosidase enzymes found in
- 25 E. coli and a related species. Notice here,

- let's start in here, there's an R here,
- 2 HEHEMYEHW. Look up top, there's RHEHEMYEHW, the
- 3 same thing on the lower one, too. They're
- 4 active sites, their business ends are almost
- 5 identical. Like I said, these are essentially
- 6 spare copies of each other.
- 186 7 Q. So in fact it wasn't a new evolved element
 - 8 to this system. It was a spare part that was
 - 9 already existing?
 - 10 A. Well, it was there and it did undergo small
 - 11 changes. But nobody, nobody denies that
 - 12 Darwinian evolution can make small changes in
 - 13 preexisting systems. Professor Miller was
 - 14 claiming that a whole new lactose utilizing
 - 15 system had been evolved in Barry Hall's
 - laboratory, and that's, you know, that's very,
 - 17 very greatly exaggerated.
- 187 18 Q. Again do you have additional slides to
 - 19 emphasize the point?
 - 20 A. Yes. This might be hard to explain, but
 - 21 Professor Hall says in one of his papers that,
 - 22 "The evidence indicates that either AS-92 and
 - 23 sys trip 977," these are the same of some amino
 - 24 acids, "are the only acceptable amino acids at
 - 25 those positions, or that all of the single based

- 1 substitutions that might be on the pathway to
- 2 other amino acid replacements at those sites,
- 3 are so deleterious that they constitute a deep
- 4 selective valley that have not been transversed
- 5 in the two billion years since those proteins
- 6 emerged from a common ancestor." Now, translated
- 7 into --
- - 9 A. -- more common language, that means that
 - 10 that very similar protein could only work if
 - 11 it became even more similar to the beta
 - 12 galactosidase that it replaced, and if you
 - then also knock out that EBG galactosidase, no
 - other protein in Professor hall's experience was
 - able to substitute for the beta galactosidase.
 - 16 So the bottom line, the bottom line is that the
 - 17 only thing demonstrated was that you can get
 - 18 tiny changes in preexisting systems, tiny
 - 19 changes in preexisting systems, which of course
 - 20 everybody already had admitted.
 - 21 Another interesting point, another
 - 22 interesting point is shown on that figure
 - 23 from Voet and Voet, the inducer, this little
 - 24 red dot, this little red dot actually stands
 - 25 for this chemical that binds to the repressor

- 1 which changes its shape which causes it to fall
- off of the operon and allow the prelimerase to
- 3 come in and transcribe that information. Well,
- 4 it turns out that the EBG operon, this place in
- 5 the DNA and E. coli that had that spare beta
- 6 galactosidase, did not have a spare permease.
- 7 So the system was stuck, because it didn't
- 8 have its own permease. When the repressor binds
- 9 to this operon, the normal lac operon, if there
- weren't any lactose around then the repressor
- 11 would be essentially stuck there indefinitely.
- 12 And even if lactose were present outside the
- 13 cell, it had no way to get inside the cell. So
- 14 what Barry Hall did to allow his experiment to
- 15 continue was that he added the inducer. He
- 16 added that artificial chemical IPTG that he can
- buy from a chemical supply house, and he took
- 18 some and sprinkled it in the beaker for the
- 19 specific purpose of allowing the bacteria to
- 20 survive so that it could take these small little
- 21 steps to produce a new beta galactosidase.
- 189 22 Q. You have a slide to demonstrate that?
 - 23 A. Yes. And Barry Hall was always very
 - 24 careful to explain exactly how these experiments
 - were performed, and he brought it directly to

- 1 the attention of readers when he described his
- 2 system. For example he writes, "At this point
- 3 it is important to discuss the use of IPTG in
- 4 these studies. Unless otherwise indicated, IPTG
- 5 is always included in media containing lactose,"
- 6 and that italics is Barry Hall's emphasis. He
- 7 wanted to make sure his reader understood
- 8 exactly what he was doing.
- 9 "The sole function of the IPTG is to induce
- 10 synthesis of the lactose permease and thus to
- 11 deliver lactose to the inside of the cell.
- 12 Neither constitutive nor the inducible of all
- 13 strains grew on lactose in the absence of IPTG."
- 14 In other words, if this intelligent agent, Barry
- 15 Hall, had not gone to the store and gotten some
- 16 IPTG to help the bacteria survive, they would
- 17 not have lived. This would not have occurred in
- 18 the wild. This tells us virtually nothing about
- 19 how Darwinian evolution could produce complex
- 20 molecular systems.
- 190 21 Q. So again this system would not have worked
 - 22 in nature but for Barry Hall interjecting the
 - 23 IPTG to make this system work?
 - 24 A. Yes. I should point out that Professor
 - 25 Miller does not mention this aspect of Barry

- 1 Hall's experiments in his discussion, in his
- 2 book Finding Darwin's God.
- 191 3 Q. Is that a significant oversight?
 - 4 A. Well, I certainly would have included it.
 - 5 MR. MUISE: Your Honor, we're about to move
 - 6 into the blood clotting system, which is really
 - 7 complex.
 - 8 THE COURT: Really? We've certainly
 - 9 absorbed a lot, haven't we?
 - MR. MUISE: We certainly have, Your Honor.
 - 11 This is Biology 2. It's a quarter past, and if
 - we're going to go until 4:30, it's probably not
 - worthwhile to start up on the blood clotting
 - 14 because it's fairly complex and heavy and a lot
 - of it is going to be --
 - 16 THE COURT: Well, we don't have an issue as
 - 17 to his availability through the day tomorrow I
 - 18 assume?
 - MR. MUISE: He's available, Your Honor, for
 - 20 as long as we need him.
 - 21 THE COURT: Any objection if we --
 - MR. ROTHSCHILD: No. He started it.
 - 23 THE COURT: I was just waiting to see what
 - 24 you'd say.
 - MR. MUISE: We've gone from Biology 101 to

1	advanced biology. So this is where we get.
2	THE COURT: We will recess then for today,
3	and we'll reconvene at 9:00 tomorrow and
4	we will pick up with Mr. Muise's direct
5	examination at that time. So have a pleasant
6	good evening, and we'll see you tomorrow.
7	(Court was adjourned at 4:15 p.m.)
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	Tammy Kitzmiller, et al. vs. Dover Schools
2	4:04-CV-02688
3	Trial Day 10, Afternoon Session
4	17 October 2005
5	
6	
7	
8	I hereby certify that the proceedings
9	and evidence are contained fully and accurately
10	in the notes taken by me on the trial of the
11	above cause, and that this copy is a correct
12	transcript of the same.
13	
14	
15	
16	s/ Wesley J. Armstrong
17	
18	Wesley J. Armstrong
19	Registered Merit Reporter
20	
21	
22	The foregoing certification of this
23	transcript does not apply to any reproduction
24	by any means unless under the direct control
25	and/or supervision of the certifying reporter.